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Available online 27 June 2015 It is, therefore, essential to understanding the molecular mechanisms of fungal resistance to ITCs. We analyzed

a subtractive library containing 180 clones of an Alternaria alternata strain resistant to 2-propenyl ITC (2-pITC).
After their sequencing, 141 expressed sequence tags (ESTs) were identified using the BlastX algorithm. The
sequence assembly was carried out using CAP3 software; the functional annotation and metabolic pathways
identification were performed using the Blast2GO program.

Results: The bioinformatics analysis revealed 124 reads with similarities to proteins involved in transcriptional
control, defense and stress pathways, cell wall integrity maintenance, detoxification, organization and
cytoskeleton destabilization; exocytosis, transport, DNA damage control, ribosome maintenance, and RNA
processing. In addition, transcripts corresponding to enzymes as oxidoreductases, transferases, hydrolases,
lyases, and ligases, were detected. Degradation pathways for styrene, aminobenzoate, and toluene were
induced, as well as the biosynthesis of phenylpropanoid and several types of N-glycan.

Conclusions: The fungal response showed that natural compounds could induce tolerance/resistance mechanisms
in organisms in the same manner as synthetic chemical products. The response of A. alternata to the toxicity
of 2-pITC is a sophisticated phenomenon including the induction of signaling cascades targeting a broad set
of cellular processes. Whole-transcriptome approaches are needed to elucidate completely the fungal response
to 2-pITC.

Keywords:

Blast2GO analysis
Fungal drug tolerance
Isothiocyanates
Natural fungicides

© 2015 Pontificia Universidad Catélica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction ITCs are compounds synthesized by plants from the Brassicaceae

family, such as radish, cauliflower, and mustard. They have a potent

The use of synthetic fungicides in agriculture caused the
development of drug-resistant fungal strains [1]. The presence of toxic
residues in agricultural products may have potentially adverse effects
on human health [2], the environment [3], and biodiversity [4,5].
It is, therefore, important to reduce the dependency on synthetic
fungicides to control phytopathogenic fungi. For this purpose,
natural fungicides of plant origin are being explored. Among them,
isothiocyanates (ITCs) represent promising alternatives to synthetic
fungicides for the control of fungi causing postharvest fruit losses
[6,7]. In addition, ITCs have attracted attention in cancer research
because of their ability to inhibit carcinogenesis and cancer growth
in both in vitro and in vivo models [8].
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fungicidal activity against a number of fungi, including Alternaria
alternata [6]. A. alternata is a fungus that causes spot lesions on the
leaves [9] and fruits [10] of a broad variety of hosts [11,12], and is
considered an important generalist phytopathogen in the field and
during postharvest. Another Alternaria species, Alternaria brassicicola is
a specialist, which is infective to the plants of the genus Brassicas [13].
Because Brassicas plants produce ITCs as a defense mechanism
against infectious microorganisms or predators, A. brassicicola
developed a particular resistance mechanism against this strong
selective pressure during their coevolution [14]. Thus, A. brassicicola
acquired special mechanisms to resist ITCs, but such mechanisms are
not present in the generalist fungus A. alternata. Because A. alternata
is phylogenetically close to A. brassicicola, we hypothesized that
A. alternata would respond and survive to the toxic effects of ITCs.
Thus, A. alternata may be a useful model to study the molecular
mechanisms activated in response to ITCs.

0717-3458/© 2015 Pontificia Universidad Catdlica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejbt.2015.06.002&domain=pdf
http://dx.doi.org/10.1016/j.ejbt.2015.06.002
mailto:elenabf@uas.edu.mx
http://dx.doi.org/10.1016/j.ejbt.2015.06.002
http://www.sciencedirect.com/science/journal/

H. Garcia-Coronado et al. / Electronic Journal of Biotechnology 18 (2015) 320-326 321

In the previous work [15], A. alternata, a fungus naturally sensitive
to ITCs, was found to acquire tolerance or resistance to the ITCs
toxicity after a constant and prolonged exposure. That work suggested
that the prolonged use of natural fungicides could induce the
emergence of resistant strains, as it has been observed with synthetic
chemical products.

For the adaptation to fungicides, fungi use various mechanisms [16].
With regard to ITCs, Sellam and coworkers [17] reported that the
response of A. brassicicola to 2p-ITC was similar to that observed
under oxidative stress conditions since 35% of the transcriptionally
induced genes corresponded to glutathione S-transferase (GST),
glutathione peroxidase, glutamyl cysteine synthetases, thioredoxins,
thioredoxin-reductases, oxidoreductases, and cytochrome P450. In
addition, the mechanisms for reducing the intracellular accumulation
of 2p-ITC were induced. In total, 16% of the induced genes were
identified as encoding mainly ATP-binding cassettes (ABCs) and major
facilitator superfamily transporter proteins [17]. In our previous work,
we constructed and analyzed a suppressive subtracted hybridization
(SSH) library from the mycelia of A. alternata treated with 2-pITC, and
found expressed sequence tags (ESTs) coding RNA-binding domains
and integral membrane proteins, such as ABC CDR4 transporters,
opsins, ATPases, and fumarate reductases [18]. In addition, we
detected the sequences coding modulating proteins of the calmodulin
family (EF-hand Ca™*) and hypothetical S-nitrosoglutathione [18].
Although these results suggest possible molecular mechanisms of
A. alternata adaptation to 2-pITC, additional adaptation mechanisms,
including numerous metabolic pathways, exist because there are
many more unexplored differentially expressed clones in the SSH
library. In our previous work, a forward library was constructed,
which allowed us to identify the genes that were being expressed
in the treated organism but not in the control organism. Thus,
the differentially expressed genes could be directly involved in the
resistance process.

In this study, we analyzed 180 such unexplored clones from the
forward SSH library constructed from A. alternata tolerant to 2-pITC.
Because of their origin and nature, these unstudied clones represent a
valuable genetic resource to provide additional scientific information
on the molecular adaptation mechanisms of A. alternata to ITCs.
Since the number of clones in this study was higher than in the first
round of analysis, we expected to find different transcripts that
were involved in previously unidentified adaptation processes in
A. alternata 2-pITC tolerance, or were involved in known adaptation
pathways to toxic compounds in other organisms. Indeed, we found a
very diverse number of transcripts encoding for proteins or enzymes
not detected in the first screening of the library. Further, they were
not reported in previous studies focusing on the Alternaria tolerance
to natural or synthetic compounds. These results are significant and
complement previous works including ours because they reveal
transcripts regulating the expression of genes and, allowed us to
visualize genetic networks that are activating metabolic pathways to
alleviate the toxic effect of 2-pITC on A. alternata.

2. Materials and methods
2.1. Library construction

A forward SSH library was constructed following the protocol of the
provider company (Clontech, Palo Alto, CA, USA). The details regarding
the A. alternata, SSH library construction can be reviewed in Baez-Flores
et al. [18]. Briefly, the mRNA was isolated from A. alternata strain
adapted to lethal levels of 2-propenyl-isothiocyanate according to the
protocol published by Islas-Flores et al. [19]. cDNAs were prepared
using the SMART PCR c¢DNA synthesis kit and subtracted with the
PCR-Select DNA Subtraction Procedure (Clontech, Palo Alto CA). The
differentially expressed cDNAs were cloned into p-GEM-T Easy vector

and cells of E. coli J]M109 were transformed with them (Promega,
Madison, WI).

2.2. Plasmid DNA extraction and sequencing of differentially expressed ESTs

Clones harboring ESTs in the pGEM®-T Easy vector (Promega
Corporation, Madison, WI, USA), from the 2-pITC-treated A. alternata
SSH library, were reactivated in LB agar. Then, the clones were
cultivated in an LB-ampicillin broth for 24 h. Plasmid DNA was
extracted using the alkaline lysis method [20] and digested with the
Rsal restriction enzyme (New England Biolabs® Inc. Ipswich, MA, USA).
The restriction products were electrophoresed on 1% agarose gel,
stained with ethidium bromide and visualized in a transilluminator set
at 312 nm (LA-20E; VWR Scientific, Buffalo Grove, IL, USA). The size of
the insert in each clone was confirmed. The plasmid DNA was sent for
sequencing (Genomic Analysis and Technology Core Facility, University
of Arizona, AZ, USA) using the Sanger dideoxy sequencing technique
and the M13 forward oligonucleotide.

2.3. Assembly and BLAST analysis of the sequences

To eliminate the DNA of vector origin and the adaptors used for
the differentially expressed fragments' amplification, the obtained
sequences were analyzed using the VecScreen program available at
the National Center for Biotechnology Information (NCBI) webpage.
Then, sequences corresponding to the same genes were assembled
using the CAP3 Sequence Assembly Software [21]. The contigs and
singletons generated were analyzed by the BLAST program using the
algorithms BlastN [22] and BlastX [23].

24. Submission of genetic sequences to DNA databases

The sequences collected in this work were deposited in
DDBJ/EMBL/GenBank using the Sequin software available at the NCBI
web page. The ESTs were deposited under the accession numbers
JK036089-]K036229. The contigs were deposited as Transcriptome
Shotgun Assembly project at DDBJ/EMBL/GenBank under Bioproject
PRJNA260095. The A. alternata Transcriptome Shotgun Assembly
Project (TSA) has the accession number GBZG00000000. The version
described in this paper is the first version (GBZG01000000) and
consists of sequences GBZG01000001-GBZG01000030.

2.5. Sequence annotation

To assign biological functions to the transcripts encoded by the
differentially expressed genes, a functional annotation of contigs
and singletons was performed using the BLAST2GO (B2GO) software
version 2.7.0 [24]. The analysis was carried out against the
non-redundant nucleotide collection of GenBank with a minimum
E-value of 1 x 10~ % and a high-scoring segment pair cut-off of 33.
The annotation step was carried out using the program default
parameters and expanded using ANNEX (Annotation Expander).
A B2GO InterPro Scan [25] was performed to search for additional
GO terms corresponding to functional domains. The ESTs with GO
annotations received enzyme codes (EC), and the B2GO KEGG module
retrieved the maps of metabolic pathways in which the tracked EC
numbers participated.

3. Results
3.1. Assembly and Blast analysis

Of 180 sequenced clones, 141 ESTs met the quality requirements
after sequence cleaning. The CAP3 Assembly resulted in 124 reads,

consisting of 40 contigs and 84 singletons. The Blast search returned
58% of the reads with similarities to characterized proteins, 25.8%
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matched hypothetical proteins, and 12% had no similarity to known
sequences. Some of the reads showing significant similarities
with known proteins are listed in Table 1, whereas the ESTs
contained in each resultant contig are listed in Table 2. Of the
sequences with similarities to hypothetical proteins, 8% were similar
to Pyrenophora teres f. terms, 5.6% to Pyrenophora tritici-repentis,
and 4% to Setosphaeria turcica proteins.

Among the sequences similar to known proteins were those
corresponding to regulatory checkpoint 1 (CHK1) and WSC
domain-containing proteins, LemA and major Woronin body proteins,
SLA1- and CFEM-domain GPI-anchored proteins, and GTP-binding,
zinc finger and actin-bundling proteins. Also, we found ESTs similar
to oxidoreductases enzymes (EC 1.2.1.23, EC 1.3.11.60, EC 1.3.8.8,
and EC 1.2.1.65); transferases (EC 2.1.1, and EC 2.7.8); hydrolases

Table 1

Sequences from a suppressive subtracted hybridization library of A. alternata resistant to 2-propenyl isothiocyanate that are similar to known proteins. The results were obtained using the
BlastX algorithm against the non-redundant database from GenBank (E-value < 1e —05).

Sequence ID GenBank accession Size Similar sequence in GB/organism/accession number Coverage E-value Identity
number (bp) % %

Aaitc271 JK036093 573 Similar to 60S ribosomal protein L28 47% 2e—50 90%
[Leptosphaeria maculans JN3] > emb|CBY00944.1|

Aaitc277 JK036098 382 Vacuolar ATP synthase catalytic subunit A 91% le—68 94%
[Pyrenophora tritici-repentis Pt-1C-BFP] > gb|[EDU43928.1|

Aaitc293 JK036107 420 Putative chitin- domain 3 protein 36% 3e—08 56%
[Botryotinia fuckeliana BcDW1] EMR83340.1

Aaitc295 JK036108 699 Woronin body major protein 54% 2e—17 58%
[P. tritici-repentis Pt-1C-BFP] > gb|[EDU41317.1|

Aaitc297 JK036109 404 Similar to hydrolase 94% 7e—71 87%
[L. maculans JN3] > emb|CBX99475.1|

Aaitc300 JK036112 448 40S ribosomal protein S26 33% 8e—15 94%
[Tuber melanosporum Mel28] > emb|CAZ81138.1|

Aaitc311 JK036120 437 ATP synthase subunit alpha, mitochondrial precursor 37% 2e—21 82%
[P. tritici-repentis Pt-1C-BFP] > gb|[EDU50467.1|

Aaitc314 JK036123 379 40S ribosomal protein S17 69% 3e—54 95%
[Aspergillus fumigatus Af293]

Aaitc318 JK036127 457 Cystathionine gamma-lyase 38% 2e—25 88%
[P. tritici-repentis Pt-1C-BFP]

Aaitc323 JK036129 410 Translational activator 48% 4e—13 79%
[Colletotrichum orbiculare MAFF 240422] ENH88059.1

Aaitc324 JK036130 406 GPI anchored CFEM domain containing protein 62% 5e —42 83%
[P. tritici-repentis Pt-1C-BFP] > gb|EDU40367.1|

Aaitc326 JK036131 571 Cytoskeleton assembly control protein SLA1 26% le—23 96%
[P. tritici-repentis Pt-1C-BFP] > gb|EDU50968.1|

Aaitc332 JK036134 732 GTP-binding protein 128up 59% 2e—96 97%
[P. tritici-repentis Pt-1C-BFP] > gb|EDU39679.1|

Aaitc344 JK036142 575 Similar to phosphatidyl synthase 55% 7e—54 81%
[L. maculans JN3] > emb|CBX91093.1|

Aaitc346 JK036144 456 Zinc finger containing protein 59% le—41 77%
[P. tritici-repentis Pt-1C-BFP] > gb|[EDU49999.1|

Aaitc383 JK036152 610 40S ribosomal protein S27 50% le—56 92%
[Pyrenophora teres f. teres 0-1] > gb|EFQ88323.1|

Aaitc388 JK036155 516 Putative actin-bundling protein 94% 2e—95 89%
[Neofusicoccum parvum UCRNP2] EOD46166.1

Aaitc405 JK036165 388 Glycoside hydrolase family 16 protein 51% 9e —21 89%
[Setosphaeria turcica Et28A] EOA83343.1

Aaitc411 JK036169 423 rRNA methyltransferase NOP1 73% 2e—66 99%
[Pyrenophora teres f. teres 0-1] > gb|EFQ87989.1|

Aaitc442 JK036185 497 Carbohydrate-binding module family 18 protein 85% 2e—83 90%
[Bipolaris maydis C5] > gb|ENI09831.1|

Aaitc449 JK036189 607 Salicylaldehyde dehydrogenase 67% 4e —66 86%
[P. tritici-repentis Pt-1C-BFP] > gb|[EDU43682.1|

Aaitc456 JK036193 348 40S ribosomal protein S26 30% 3e—05 97%
[T. melanosporum Mel28] > emb|CAZ81138.1|

Aaitc457 JK036194 401 Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-mannosidase 95% le—32 64%
[Pseudozyma hubeiensis SY62]

Aaitc462 JK036198 490 Similar to importin beta-4 subunit 74% 2e—68 93%
[L. maculans JN3] > emb|CBX96195.1|

Aaitc464 JK036200 308 Arrestin domain containing protein 88% 2e—51 91%
[P. tritici-repentis Pt-1C-BFP] > gb|EDU48753.1|

Aaitc466 JK036201 400 Mitochondrial fusion GTPase protein 95% le—73 94%
[P. tritici-repentis Pt-1C-BFP] > gb|EDU42985.1|

Aaitc473 JK036207 853 Streptomycin biosynthesis protein Strl 93% 7e—158 78%
[P. tritici-repentis Pt-1C-BFP] > gb|EDU51230.1|

Aaitc474 JK036208 727 Pentatricopeptide repeat protein 97% le—141 90%
[P. tritici-repentis Pt-1C-BFP] > gb|EDU39902.1|

Aaitc485 JK036216 323 Histone H2A 31% 3e—12 97%
[Coniosporium apollinis CBS 100218] EON65154.1

Aaitc490 JK036221 526 ABC transporter CDR4 97% 4e —50 59%
[P. tritici-repentis Pt-1C-BFP] > gb|EDU44273.1|

Aaitc493 JK036224 480 Iron sulfur cluster assembly protein 1, mitochondrial precursor 71% le—75 98%

[P. tritici-repentis Pt-1C-BFP] > gh|EDU44735.1|
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Table 2
ESTs in contigs.

Contigs Contig accession ESTs in contig EST GenBank

(Lab ID) number (TSA) (Lab ID) accession number

Aaitcas18 GBZG01000001 Aaitc412 JK036170
Aaitc273 JK036095
Aaitc455 JK036192

Aaitcas19 GBZG01000002 Aaitc389 JK036156
Aaitc274 JK036096
Aaitc394 JK036158
Aaitc482 JK036214

Aaitcas20 GBZG01000003 Aaitc448 JK036229
Aaitc290 JK036105
Aaitc491 JK036222

Aaitcas21 GBZG01000004 Aaitc306 JK036116
Aaitc307 JK036117
Aaitc434 JK036181
Aaitc470 JK036205

Aaitcas22 GBZG01000005 Aaitc381 JK036150
Aaitc343 JK036141
Aaitc425 JK036172
Aaitc268 JK036090
Aaitc331 JK036133
Aaitc387 JK036154
Aaitc495 JK036226
Aaitc496 JK036227
Aaitc461 JK036197
Aaitc481 JK036213

Aaitcas23 GBZG01000006 Aaitc428 JK036175
Aaitc358 JK036149
Aaitc341 JK036140
Aaitc329 JK036132
Aaitc450 JK036190
Aaitc410 JK036168
Aaitc467 JK036202

Aaitcas24 GBZG01000007 Aaitc349 JK036146
Aaitc435 JK036182
Aaitc489 JK036220

Aaitcas25 GBZG01000008 Aaitc441 JK036184
Aaitc409 JK036167
Aaitc477 JK036210

Aaitcas26 GBZG01000009 Aaitc278 JK036099
Aaitc458 JK036195

Aaitcas27 GBZG01000010 Aaitc356 JK036148
Aaitc484 JK036215

Aaitcas28 GBZG01000011 Aaitc399 JK036160
Aaitc492 JK036223

Aaitcas29 GBZG01000012 Aaitc475 JK036209
Aaitc401 JK036161
Aaitc288 JK036103
Aaitc267 JK036089
Aaitc285 JK036102
Aaitc404 JK036164
Aaitc403 JK036163
Aaitc460 JK036196
Aaitc471 JK036206

Aaitcas30 GBZG01000013 Aaitc478 JK036211
Aaitc426 JK036173

Aaitcas31 GBZG01000014 Aaitc486 JK036217
Aaitc494 JK036225

Aaitcas32 GBZG01000015 Aaitc488 JK036219
Aaitc469 JK036204

Aaitcas33 GBZG01000016 Aaitc338 JK036138
Aaitc1A

Aaitcas34 GBZG01000017 Aaitc348 JK036145
Aaitc33

Aaitcas35 GBZG01000018 Aaitc427 JK036174
Aaitc65

Aaitcas36 GBZG01000019 Aaitc430 JK036177
Aaitc161

Aaitcas37 GBZG01000020 Aaitc463 JK036199
Aaitc133

Aaitcas38 GBZG01000021 Aaitc143
Aaitc46

Aaitcas39 GBZG01000022 Aaitc150
Aaitc436 JK036183
Aaitc301 JK036113

Aaitcas40 GBZG01000023 Aaitc227
Aaitc315 JK036124

Table 2 (continued)

Contigs Contig accession ESTs in contig EST GenBank
(Lab ID) number (TSA) (Lab ID) accession number
Aaitcas41 GBZG01000024 Aaitc289 JK036104
Aaitc276 JK036097
Aaitcas42 GBZG01000025 Aaitc299 JKO036111
Aaitc279 JK036100
Aaitcas43 GBZG01000026 Aaitc322 JK036128
Aaitc305 JK036115
Aaitcas44 GBZG01000027 Aaitc345 JK036143
Aaitc316 JK036125
Aaitcas45 GBZG01000028 Aaitc335 JK036136
Aaitc269 JK036091
Aaitc304 JK036114
Aaitc308 JK036118
Aaitc310 JK036119
Aaitc317 JK036126
Aaitcas46 GBZG01000029 Aaitc443 JK036186
Aaitc337 JK036137
Aaitc429 JK036176
Aaitcasd7 GBZG01000030 Aaitc447 JK036188
Aaitc451 JK036191
Aaitc433 JK036180

(EC3.6.5.1, EC3.2.1, EC 3.1.1.2, EC 3.6.4.13, and EC 3.6.3.14); a lyase
(EC4.4.1.1); and a ligase (EC 6.2.1.17).

3.2. Functional annotation and metabolic pathways

In the functional annotation procedure, the B2GO software assigned
GO terms to 54% of the reads set, whereas no results were obtained for
13%, 22%, and 9.6% of the sequences during the blasting, mapping,
or annotation processes, respectively. A total of 265 annotations and
17 EC numbers (for 16 sequences) were retrieved. The annotation
distribution, according to GO, showed that the best-represented
categories at level two were molecular function and biological process.
In the molecular function category (Fig. 1a), more transcripts were
assigned to binding (38) and catalytic activity (33) followed by
structural molecule activity (13). In the biological process category
(Fig. 1b), the main clusters were cellular and metabolic process
(both with 44 GO terms) followed by single organisms and localization
(22 and 17 GO terms, respectively).

Based on the EC codes assigned to sequences and the KEGG maps
retrieved by B2GO, we obtained transcripts having enzymatic functions
involved in the metabolic pathways. The exposure of A. alternata to
2-pITC, differentially induced enzymes participating in the metabolism
of nitrogen, pyruvate, cysteine and methionine, selenium compounds,
propanoate, phenylalanine, butanoate, methane, glycine, serine, and
threonine. Also, the enzymes participating in styrene, aminobenzoate,
and toluene degradation were induced. Furthermore, the enzymes
involved in catalyzing steps in glycolysis, gluconeogenesis, citrate
cycle, oxidative phosphorylation, and carbon fixation pathways,
were detected. Finally, the enzymes involved in the phenylpropanoid
pathway and several types of N-glycan biosynthesis were also
differentially induced.

4. Discussion

Among the differentially expressed ESTs of A. alternata tolerant to
2-pITC, Aaitc346 (GenBank accession number JK036144) showed
significant similarity to a Zn-finger transcription factor. This protein is
induced, along with ABC transporters, in Aspergillus fumigatus after
exposure to voriconazole [26] and in Fusarium graminearum after
exposure to tebuconazole [27]. In plants, these proteins are involved
in defense pathways and are induced in response to several types
of stress [28]. In F. graminearum, the Zn-finger transcription factor
tac1p, which is a transcriptional activator of CDR genes, regulates the
expression of CDR1 and CDR2, which encode ABC transporters in
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azole-resistant clinical isolates of Candida albicans [29]. Moreover,
Botrytis cinerea that are resistant to several fungicides overexpress
an ABC transporter, which is induced by a mutation in the putative
Zn-finger transcription factor Mrr1 [30]. In our previous work,
using real-time RT-PCR, we confirmed the overexpression of an ABC
transporter in A. alternata in response to 2-pITC [18]. Thus, the
Zn-finger transcription factor is induced by 2-pITC, which activates
the expression of the ABC multidrug CDR4 transporters in A. alternata
to provide tolerance to 2p-ITC.

In our current work, we found a sequence similar to a protein
containing a WSC domain [31]. The WSC1 gene encodes an integral
membrane protein (Wsc1p) that functions as a stress sensor. In yeast,
this protein participates in the monitoring of cell wall integrity
and the activation of the protein kinase C (PKC) pathway in response
to external stress signals, such as cell wall perturbations. Wscp1
also regulates 1,3-pB-glycan synthesis [31,32], a metabolic pathway
identified in the B2GO analysis.

Among the 2p-ITC induced-transcripts of A. alternata, we also
found a sequence encoding a karyopherin, Kap123. This molecule
has an important role in cell integrity, which also depends on
PKC pathway activity that regulates the secretion and vesicular
transport pathway. The cellular integrity pathway is activated after cell
wall damage [33]. Other sequences involved in cellular integrity are
those encoding the major Woronin body protein, the GPI-anchored
CFEM domain-containing protein, and the oxidoreductase glyoxal
oxidase. The Woronin bodies are proteinic corpuscles that move
to the septal pore of filamentous fungi in response to cellular

a
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Electron carrier activity 1

Nucleic acid binding transcription factor
activity
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]
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damage [34], whereas the GPI-anchored CFEM domain-containing
proteins are involved in cell wall stabilization [35]. Glyoxal oxidase
may have a role in fungal detoxification [36]. The induction of this
enzyme in 2p-ITC-treated A. alternata suggests it has a role in the
detoxification of 2p-ITC.

Other genes induced in A. alternata after 2p-ITC treatments
are GTPases. Some of these molecules are activated by stress, and in
turn, they activate the Pkcl kinase in the PKC pathway [32]. The
interruption of CgBem2, which encodes a GTPases activator protein in
Candida glabrata, resulted in azole susceptibility, suggesting a function
for GTPases in the survival to stress caused by antimycotics [37]. Thus,
the induction of GTPases in A. alternata after 2p-ITC treatments
suggests its participation in the resistance to 2p-ITC.

In our library, we also found a sequence similar to an SLA1 protein,
an actin-cytoskeleton regulatory complex component (PAN1), and
an ubiquitin-binding protein [38]. Moreover, actin-binding proteins
that direct the response to external stimuli [39] were detected.
Additionally, sequences similar to proteins containing Lem domains
were identified. In yeast, these proteins participate in the genome
and nuclear structure organization [40] while, in Caenorhabditis
elegans, they have a role in the response to DNA damage [41].
Another transcript induced by 2p-ITC codes for the regulatory
protein CHK1, which is also involved in responses to DNA damage
and cell survival [42]. In Clonostachys rosea, the CHK1 protein was
induced in response to oxidative stress by toxins [43]. Because
2p-ITC is a compound causing oxidative stress, it is feasible that
CHK1 was induced in A. alternata after the 2p-ITC treatment.
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Fig. 1. Results of the annotation of sequences from a suppressive subtracted hybridization library of A. alternata resistant to 2-propenyl isothiocyanate. The distribution of gene ontology
(GO) terms is shown at a GO level 2. The number in each category shows the frequency for each GO term. a) Molecular function; b) Biological process.
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Several sequences detected in the library suggest that 2p-ITC
induces a large variety of proteins and enzymes involved in the
activation of signal cascades that promote general cellular responses
oriented to cell reparation and maintenance. Such sequences
encode 40S (S0, S17, S18, S26, and S27) and 60S (PO, L20, L21, and
L28) ribosomal subunits; 1-a-elongation factor; methyltransferases;
transcripts involved in amino acid biosynthesis (aminotransferase and
cystathionine gamma-lyase); sequences participating in fungal pH
adaptation (arrestin domain-containing proteins) [44]; proteins
implicated in RNA metabolism (pentatricopeptide repeat motif) [45]
or, functioning as chaperones (DEAD box proteins) [46]. Additionally,
were identified the transcripts involved in the regulation of genetic
expression (Fe-S clusters) [47] and cell cycle progression, as well
as in ribosome biogenesis (GTP-binding proteins) [48]. According
to their reported functions, none of these proteins can directly
confer resistance to the fungus against fungicides. However, the
overexpression of these molecules provides protection against the
effects of 2p-ITC on the structure and function of the fungal cell. Thus,
the cell uses all possible genetic, biochemical, and structural strategies
to survive the toxicity of 2p-ITC.

In our previous study, the tolerance of A. alternata to 2p-ITC required
mainly calcium ions and the efflux of the compound by an ABC
transporter. There is evidence that the genes induced in A. alternata by
2p-ITC, are also expressed in response to synthetic fungicides [26].
When A. alternata was treated with the synthetic compound carbonyl
sulfide, 510 cDNAs differentially expressed were found. These
genes are related to general metabolism, growth, cellular division,
defense, cellular transport, and signal transduction [49], similar to
our work results. Therefore, it should be emphasized that even
natural compounds could induce tolerance/resistance mechanisms
in organisms in the same manner as synthetic chemical products if
they were not used properly. In a study with fungal toxins Kosawang
et al. [43] using a SSH experimental approach reported 443 and
446 differentially expressed clones induced in Clonostachys rosea by
deoxynivalenol (DON) and zearalenone (ZEA) toxins, respectively.
DON induced proteins involved in the stress response as well as
metabolic enzymes (cytochromes c oxidase and P450) while ZEA
induced the detoxifying enzyme HD101 and ABC pleiotropic drug
transporters. These authors concluded that the tolerance to fungal
toxins in C. rosea was provided by a broad range of genes playing a
role in metabolism and transport. Based on the increase of transcripts
encoding the metabolic enzymes CYP450 and COX, the sugar
transporters HXT2 and H +--ATPase, as well as the Hsp70 and Hsp90
proteins, they stated that the cellular energy was used to synthesize
proteins that were inactivated by the toxins.

Several publications using a differential expression approach to
studying the response to natural and synthetic compounds have
reported different numbers of genes induced. However, the reported
number of metabolic pathways by using more robust protocols is
modest, considering the robustness of the techniques used. The
number of genes reported as induced by synthetic compounds in
the literature is higher than in this work. This fact is not related to
the treatment, but rather to the methodology. For instance, using
microarrays, Ferreira et al. [26] found 2271 genes differentially
expressed in A. fumigatus exposed to voriconazole. These authors
reported increased transcripts levels of genes involved in a
variety of cellular functions: e.g. transporters, transcription factors
as well as proteins involved in cell metabolism. In agreement
with our results, these authors found that the induction of two
C2H2 zinc finger domains, ATPase and calmodulin transcription
factors putatively involved in the response to stress conditions
imposed by the voriconazole treatment. These authors hypothesized
that these proteins could have as target genes participating in
detoxification (transporters).

Another study using microarrays in F. graminearum (Becher et al.
[27]), reported 1058 differentially expressed genes in response to azole

treatment and of them, 596 showed significantly increased transcript
levels. The functional annotation of these genes found the ergosterol
biosynthesis as an important pathway in the fungal response to azole.
Also, the authors found transcripts differentially expressed encoding
ABC transporters and transcription factors, presumably involved
in mechanisms to decrease the toxic effect of the fungicide. They
studied the expression level of 31 genes, out of which, they found five
genes with increased transcript levels. These genes were involved
in sterol metabolic processes. In contrast to our results, these authors
reported a decreased expression of genes related to amino acid
transport and metabolism. Even though this article reports a rather
large study, the analysis of the genes with increased transcripts
levels (GO annotation) identified only a few functional categories
significantly represented; among them, the sterol biosynthetic process
and tetracyclic and pentacyclic triterpene metabolism were found as
the most represented functional categories. Additionally, isoprenoid
metabolism and heme-binding proteins were important processes
and functional category, respectively. The mentioned work found
the induction of proteins with hexosyltransferase activity as well as
proteins involved in membrane processes, mycelium development,
respiratory chain, and energy generation. These authors assume
that many of the induced genes exhibit a non-specific stress
response caused by the azole membrane perturbations. However,
they observed that the majority of the overexpressing genes
responded specifically to the fungicide treatment. All of the
pathways reported in that work were identified in our study. As
compared with the mentioned published works, this is rather small
due to the experimental approach utilized. However, we have a
great variety of transcripts induced.

5. Concluding remarks

The results herein presented revealed a broader set of transcripts
and cellular activities putatively implicated in the survival of
A. alternata exposed to 2p-ITC. The induction of signaling cascades
targeting diverse cellular processes is evident. These involve
mainly the pathways of defense and stress response, cell wall
integrity, cytoskeleton organization, and destabilization, as well
as exocytosis and transport. Additionally, genome and nuclear
structure organization, protein and ribosome synthesis, cell cycle
progression, and DNA damage response activities were induced.
Furthermore, some metabolic pathways underlying the fungal genetic
responses against toxic compounds were identified. Interestingly, the
proteins and enzymes that were induced in response to 2p-ITC can
also be induced by the fungal resistance to different synthetic
compounds. By performing a complete analysis of the A. alternata
SSH library, a larger number of biological processes and molecular
functions induced by 2p-ITC were identified. These findings show that
the response of A. alternata to the toxic effects of 2-PITC is a complex
and sophisticated defense mechanism. However, it is possible that
the expression of some genes is elicited by a primary response
of other genes to the toxicity of 2p-ITC, as suggested by the
expression of genes related to the promotion of general cellular
responses linked to growth and maintenance processes. To better
understand the role for each transcript, RNA-seq and microarray
studies should be performed. Thus, the complete knowledge of the
tolerance mechanisms of A. alternata to 2-pITC will require the use of
whole transcriptomic sequencing, genetic-level expression analyses,
and functional analyses, which will allow us to study all of the genes
involved and their functions in the resistance process.
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