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Article history: Background: Cultivated peanut (Arachis hypogaea L.) is a major oilseed crop worldwide. Fatty acid composition of
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the major fatty acids of peanut oil. The conversion from oleic acid to linoleic acid is controlled by the A12 fatty
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acid desaturase (FAD) encoded by AhFAD2A and AhFAD2B, two homoeologous genes from A and B
subgenomes, respectively. One nucleotide substitution (G:C — A:T) of AhFAD2A and an “A” insertion of

ﬁfﬁ?sriipogam AhFAD2B resulted in high-oleic acid phenotype. Detection of AhFAD2 mutation had been achieved by cleaved
Fatty acid desaturase amplified polymorphic sequence (CAPS), real-time polymerase chain reaction (qRT-PCR) and allele-specific
High oleic acid PCR (AS-PCR). However, a low cost, high throughput and high specific method is still required to detect
Kompetitive allele specific PCR AhFAD2 genotype of large number of seeds. Kompetitive allele specific PCR (KASP) can detect both alleles in a
Linoleic acid single reaction. The aim of this work is to develop KASP for detection AhFAD2 genotype of large number of

Marker assisted selection
Molecular breeding
Mutation in peanut
Nucleotide substitution
Oilseed crop

breeding materials.

Results: Here, we developed a KASP method to detect the genotypes of progenies between high oleic acid peanut
and common peanut. Validation was carried out by CAPS analysis. The results from KASP assay and CAPS analysis
were consistent. The genotype of 18 out of 179 B(4F; seeds was aabb.

Conclusions: Due to high accuracy, time saving, high throughput feature and low cost, KASP is more suitable for

Peanut oil

determining AhFAD2 genotype than other methods.

© 2016 Pontificia Universidad Catélica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cultivated peanut (Arachis hypogaea L.) is one of the most important
oil crops worldwide. Oleic acid and linoleic acid are the major fatty acids
of peanut oil, accounting for approximately 80% of the oil composition
[1]. Linoleic acid contains two double bonds at the A9 and A12
positions of the hydrocarbon chain. Oleic acid with only one double
bond at the A9 position is more stable to oxidation than linoleic acid
[2]. As a result, the oleic acid and linoleic acid (O/L) ratio is an
important parameter for oil quality determination. By determining
fatty acid composition the first two natural high-oleate peanut
mutants (F435-2-1 and F435-2-2) were identified. The O/L ratio of the
mutants reached nearly 40:1 [3]. Numerous high O/L peanut cultivars
such as ‘SunOleic 95R’, ‘SunOleic 97R’, ‘Florida-07’ and some Chinese
peanut varieties including Kainong176, and K17-15 were developed
from F435 via traditional breeding efforts [4,5,6]. High oleic acid
content in these mutants was controlled by two major recessive genes
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[7]. Using Arabidopsis FAD2 cDNA as a probe, two homologous and
non-allelic genes encoding A12 fatty acid desaturase were isolated
and characterized in peanut [8,9]. A12 fatty acid desaturase is
responsible for the conversion of oleic acid to linoleic acid in peanut
[8,10]. One of these two genes was from A subgenome and designated
as AhFAD2A. The mutant allele fad2a had G — A transition at position
448 after the start codon. This caused a nonsynonymous amino acid
substitution from aspartic acid to asparagine (D150N). This mutation
resulted in a dysfunctional AhFAD2A desaturase. FAD2 gene from B
subgenome was designated as AhFAD2B. The mutant allele fad2b had
an “A” insertion at position 442 after the start codon. This insertion
resulted in a frame shift and led to an inactive AhFAD2B desaturase
[9,10]. There are only 11 base pair difference between AhFAD2A and
ARFAD2B, resulting in a difference of 4 amino acids.

Based on the gene character of AhFAD2A and AhFAD2B, DNA markers
were developed for marker-assisted selection (MAS) to enhance the
efficiency of high oleic acid peanut breeding program. Cleaved
amplified polymorphic sequence (CAPS) markers were first developed
for ARFAD2A [11] and AhFAD2B detection [12]. Subsequently,
allele-specific polymerase chain reaction (AS-PCR) method was
developed [13] and further optimized [14]. PCR product sequencing
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method was also used to distinguish AhRFAD2B gene in the hybrids from
crosses between normal cultivars and high oleate cultivars [15].
Real-time PCR amplification of AhFAD2B and AhFAD2A was used to
discriminate wild type plants from the mutant alleles [16,17]. These
various markers for AhFAD2A and AhFAD2B detection allow breeders
and researchers to determine the genotypes of peanut lines with AABB,
aabb and AaBb. There are nine genotypes in F, hybrids. It is difficult to
distinguish all these genotypes within one experiment using the
above-mentioned methods. Furthermore, utilization of restriction
enzymes in CAPS and fluorescence-labeled probes in real-time PCR
resulted in relatively high cost of these methods. Therefore, a simple,
high throughput and low cost assay with high resolution is required.

KASP (Kompetitive Allele Specific PCR) is a novel competitive allele
specific PCR for SNP genotyping assay based on dual FRET (Fluorescent
Resonance Energy Transfer). In this method, the sample DNA is
amplified with thermal cycler using allele specific primers. The allele
specific primers are conjugated to fluorometric dye HEX and FAM at
their 5’ end, respectively. When FRET cassette primer is hybridized with
DNA, fluorometric dye and quencher are separated, leading to emitting
of the corresponding fluorescence. The genotype is easily detected
by reading fluorescent signals. Owing to low cost, high throughput,
and high specificity and sensitivity, KASP has been extensively used
in massive SNP genotyping studies such as genome-wide SNP assay for
rice genotyping [18], molecular markers-assisted breeding of wheat
leaf rust resistance [19], and soybean cyst nematode resistance [20]. In
peanut, KASP assay was firstly applied to screen on 94 genotypes
using 96 SNPs, [21]. In this study, the KASP method was developed
to detect all genotypes of AhFAD2A and AhFAD2B in different cross
progenies.

2. Materials and methods
2.1. Plant materials

To develop peanut with high oleate and high yield for domestic
consumption, cross was made between high oleate donors, Kainong176
(developed by Kaifeng Academy of Agriculture and Forestry), and
normal oleate and high yield peanut cultivars, Huayu 31 (developed by
Shandong Peanut Research Institute).

2.2. DNA extraction

About 0.1 g of a slice of cotyledonary tissue from parents, F; and F,
mature seeds was obtained and placed with a 3.97 mm steel ball in a
1.5 mL tube. Tubes were immersed in liquid nitrogen and tissue was
finely ground by intensely shaking the tube for 1 min. DNA extraction
was performed according to the protocol of TIANGEN plant genomic
DNA extraction kit (category No. DP-305).

2.3. KASP method

The KASP method was used to detect crossing parents, F; and BC4F,
seeds. The KASP reaction and its components are described at http://
www.lgcgenomics.com/genotyping/kasp-genotyping-reagents/how-
does-kasp-work. Sequences of allele-specific and common primers are
listed in Table 1. 1.5 pL 2 x KASP PCR mix, 35-45 ng of genomic DNA
template, 0.16 uM allele-specific forward primers, and 0.41 uM reverse
primers were incorporated into 3 pL of KASP reaction. Amplification
was performed in a Hydrocycler, water bath thermal cyclers, starting
with 15 min at 94°C, a touchdown phase of 10 cycles at 94°C for 20 s
and at 65°C for 60 s with a 1°C decrease in temperature per cycle,
followed by 35 cycles of 94°C for 20 s and 55°C for 60 s. Once the
thermal cycle is complete, BMG Omega F plate reader was used to
read fluorescence signal. Fluorescence signal was acquired at 520 nm
(green) and 556 nm (yellow) for 2 min at 25°C.

Table 1
Primers for KASP and CAPS.

Primer name

AhFAD2A-Allele-1
AhFAD2A-Allele-2
AhFAD2A-common
AhFAD2B-Allele-1
AhFAD2B-Allele-2
AhFAD2B-common
Allele-] Tail (FAM tail)
Allele-2 Tail (HEX tail)

Sequence

5'-GTTTTGGGACAAACACTTCGTT-3’
5'-GTTTTGGGACAAACACTTCGTC-3'
5’-CGCCACCACTCCAACACC-3’
5'-CAAACACTTCGTCGCGGTCT-3’
5'-CAAACACTTCGTCGCGGTCG-3'
5'-CCGCCACCACTCCAACACA-3’
5'-GAAGGTGACCAAGTTCATGCT-3’
5" GAAGGTCGGAGTCAACGGATT-3’

aF19 5'-GATTACTGATTATTGACTT-3’
1056 5’-CCAACCCAAACCTTTCAGAG-3’
bF19 5'-CAGAACCATTAGCTTTG-3’
R1/FAD 5'-CTCTGACTATGCATCAG-3’

2.4. Validation of KASP using CAPS method

CAPS method [11,12] was used to validate the KASP results of
AhFAD2A and AhFAD2B. Briefly, to detect AhFAD2A genotype, the
genomic DNA was amplified with primers aF19 and 1056 (Table 1).
Each reaction contained 1 pL of DNA, 2 L of 10x PCR buffer (Takara),
0.2 pL of ExTaq DNA polymerase (Takara), 1.6 pL of 2.5 mM dNTPs
(Takara), 0.5 pL of forward and reverse primers in 20 pL reaction
system. The PCR condition was 94°C for 5 min followed by 35 cycles of
94°C for 30 s, 51°C for 30 s, and 72°C for 1 min. The final extension
step was at 72°C for 7 min. PCR products were digested with 1 U of
Hpy99I restriction enzyme (New England Biolabs, Ipswich, MA) at
37°C for 4 h. The digested products were separated on a 2% (w/v)
agarose gel and stained with ethidium bromide. To detect the
AhFAD2B genotype, primer pairs bF19/R1(FAD) (Table 1) amplified
the coding region of AhFAD2B genes using a total PCR reaction volume
of 20 pL containing 0.5 pL DNA, 0.5 pL FastPfu DNA polymerase
(Transgene Biotech), 4.0 uL of 5x Pfu buffer, 0.4 pL of 10 mM dNTPs
(Transgene Biotech), and 0.5 pL forward and reverse primers R1(FAD),
respectively. Amplification conditions were initiated at 94°C for 5 min
for denaturation; 35 cycles of 94°C for 45 s, 52°C for 45 s, 72°C for
60 s; final extension at 72°C for 7 min. Eight microliters of the
amplification products was digested by 0.2 pL or 2 U of Hpy188I (New
England Biolabs, Ipswich, MA, USA). The digestion was performed at
37°C overnight. Digested products were separated on a 2% (w/v)
agarose gel.

3. Results and discussion
3.1. Genotyping AhFAD2A and AhFAD2B by KASP

The genotypes of AhRFAD2A and AhFAD2B genes in normal oleic
peanut and high oleate peanut were designated as AABB and aabb,
respectively. To develop the KASP method allele-specific primers were
designed based on the sequences of wild type and mutant AhFAD2A
and AhFAD2B genes (Table 1). The KASP assay mix contains three
assay-specific non-labeled oligos: two allele-specific forward primers
and one common reverse primer. The allele-specific forward primers
differentiated the mutant allele from wild type allele. Due to the high
sequence identity of coding region of AhRFAD2A and AhFAD2B genes,
the primers are the key to successfully distinguish these two genes.
Fortunately, there is a SNP between these two genes at position 432
from the 5’ end of the open reading frame (C in FAD2A and A in
FAD2B) [10]. Therefore, according to the competitive allele specific
PCR theory of KASP, 3’ end of the common reverse primer was
designed at this SNP position to discriminate A and B subgenomes
(Fig. 1).

The allele-specific primers each harbored a unique tail sequence that
corresponds with a universal FRET (fluorescence resonant energy
transfer) cassette; Ahfad2a/Ahfad2b-Allele-1 Tail primer, the mutant
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A/B subgenome SNP
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AhFAD2A-mutant GC_ 00000

CCAACA TTCCCTC—GA“G* CHACGAAGTGTTTGTC CCA
(Tai 1-Allele-AFAD2A-mutant |

ARFAD2B-WT GCCGCCACCACTCCAACACGGTTCOCTC-GACCGOGACGAAGTGTTTGTCOCAAACCA

AhFAD2B-common

Tail 2-Allele-AhFAD2B-WT

ARFAD2B-mutant GCCGCCACCACTCCAACACIGGTTCCCTC CACCCCGACGAAGTCTTTCTCCAAACCA

Tail 1-Allele-AhFAD2B-mutant
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Fig. 1. Locations of genetic mutations and primer design in both AhFAD2A and AhFAD2B alleles. Different primer sites were shown with different colors. All primer sequences were shown in

Table 1.

allele-specific primer, was labeled with FAM™ dye and AhFAD2A/
AhFAD2B-Allele-2 Tail primer, the WT allele-specific primer, was
labeled with HEX™ dye. Bi-allelic discrimination is achieved through
the competitive binding of these two allele-specific forward primers. If
the genotype at a given SNP is aa or bb homozygous, only FAM
fluorescent signal could be generated. If the genotype at a given SNP is
AA or BB homozygous, only HEX fluorescent signal could be obtained.
If the genotype is heterozygous, a mixed fluorescent signal was
produced. KASP method was used to genotype the seeds from the
male parent (aabb), female parent (AABB) and F; (AaBb) in this study.
As shown in Fig. 2, three different genotypes were clearly separated,
and the dots of each genotype were closely assembled. Therefore,
our results demonstrated that the developed KASP could detect the
genotypes of peanut AhFAD2A and AhFAD2B genes.

3.2. Validation of KASP using CAPS

CAPS assay was successfully developed to detect the genotype of
AhFAD2A and AhFAD2B [11,12]. In this study, we confirmed some of
the KASP results by CAPS analysis. The recognition site sequence of
Hpy99l is 5'-CGWCG-3’ (W = A/T). This restriction site was found in
the ORF of the wild-type FAD2A but not in high O/L mutant peanut
lines [22,23]. Therefore, the 826 bp PCR product amplified from
AhFAD2A gene of WT peanut could be recognized by Hpy99I and cut
into two fragments, 598 bp and 228 bp in length (Fig. 3a). In the
Ahfad2a mutant lines, the PCR product could not be recognized by
Hpy99I and then no digestion product could be observed. Incomplete
digestion could be observed in WT peanut in part due to the low
fidelity of the Taq polymerase used for PCR amplification [11]. The
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recognition site sequence of Hpy188I is 5-TCNGA-3’. Due to the
insertion of an “A” between 441_442 resulted in the “TCAGA” in the
Ahfad2b mutant allele. The mutant allele, therefore, can be digested by
Hpy188I at this position, whereas the AhFAD2B wild-type and
ARFAD2A alleles cannot be digested (Fig. 3b). DNA was extracted from
the male parent, the female parent, and 20 F; seeds, which have been
analyzed by KASP. After PCR amplification and digestion with Hpy99l
and Hpy188I, genotypes of 22 samples were all consistent with
the results obtained from KASP. These results together indicated that
we successfully developed KASP assay method to efficiently and
accurately distinguish AhFAD2A and AhFAD2B of the WT, mutant and
F; hybrids.

3.3. Application of KASP in genotyping of BC4F, generation

Due to the nature of allotetraploid, the cross between homozygote
high oleic acid peanut (aabb) and normal peanut cultivar (AABB)
produces 9 genotypes in F, or BC4F, generations. These genotypes
are AABB, AaBB, AABb, AaBb, aaBB, aaBb, AAbb, Aabb and aabb,
respectively. Furthermore, the number of F, or BC4F; seeds is about 30
times of F; or BC4F; (If one F; plant could produce 30 seeds).
Compared to the other detection method, KASP is simple, low cost and
efficient. In this study, KASP was successfully used to examine the
genotypes of BC4F, segregating populations. Out of 179 BC4F, seeds
detected, the genotype of 18 F, seeds was aabb, and the genotype of
25 seeds was AaBb (Supplementary Table 1 and Supplementary Table
2). Therefore, we successfully developed KASP assay to efficiently and
accurately distinguish all forms of ARFAD2A and AhFAD2B in peanut.

Fig. 2. Genotyping results of AhFAD2A (a) and AhFAD2B (b) by KASP. The scatter plot with axes x and y represents allelic discrimination of FAD2A or FAD2B genotypes. The red, green and
blue dots represent the mutant homozygous, heterozygous and wild-type homozygous, respectively.
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Fig. 3. Genotyping results of AhRFAD2A and AhFAD2B by CAPS. (a) Hpy99I digestion of PCR products; (b) Hpy188I digestion of PCR products. M referred to DL5000 DNA Marker; Lane 1 and
Lane 2 showed the genotypes of Huayu31 and Kainong176, respectively; Lanes 3-22 showed the genotypes of 20 F; seeds, respectively.

4. Conclusions

In this research, KASP has been successfully developed to detect the
genotype of AhFAD2A and AhFAD2B in peanut. Due to high accuracy,
saving time and resources, this method will greatly facilitate breeding
progress of high oleate peanut. It is more suitable for determining
AhFAD2 genotype than other methods.
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