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Heavy metals are natural elements in the Earth’s crust that can enter human food through industrial or
agricultural processing, in the form of fertilizers and pesticides. These elements are not biodegradable. Some
heavy metals are known as pollutants and are toxic, and their bioaccumulation in plant and animal tissues can
cause undesirable effects for humans; therefore, their amount in water and food should always be under
control. The aim of this study is to investigate the conditions for the bioremediation of heavy metals in foods.
Various physical, chemical, and biological methods have been used to reduce the heavy metal content in the
environment. During the last decades, bioremediation methods using plants and microorganisms have created
interest to researchers for their advantages such as being more specific and environmentally friendly. The
main pollutant elements in foods and beverages are lead, cadmium, arsenic, and mercury, which have their
own permissible limits. Among the microorganisms that are capable of bioremediation of heavy metals,
Saccharomyces cerevisiae is an interesting choice for its special characteristics and being safe for humans, which
make it quite common and useful in the food industry. Its mass production as the byproduct of the
fermentation industry and the low cost of culture media are the other advantages. The ability of this yeast to
remove an individual separated element has also been widely investigated. In countries with high heavy metal
pollution in wheat, the use of S. cerevisiae is a native solution for overcoming the problem of solution.
This article summarizes the main conditions for heavy metal absorption by S. cerevisiae.
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1. Introduction

Presently, industrialization in the world is growing increasingly,
which can affect the quality of the water, food, feed, and weather [1].
Various industries such as chemical, food, textile, and metallurgy
release high amounts of waste including toxic substances to the
environment. Pesticides and chemical fertilizers in agriculture and
vehicles for transportation discharge large quantities of pollutants
containing heavy metals into the atmosphere [2].

Food safety is considerably threatened by heavy metal pollution.
Several studies have also proved the accumulation of heavy metals
in water [3,4,5,6], rice [7,8], vegetables [9,10,11], and fish [12].
Accumulation of heavy metals in human organs and tissues has
caused some diseases such as kidney, cardiovascular system, and
nervous system disorders [1,2].

Many strategies have been used thus far for solving the problem
of heavy metal pollution in the environment. Applying the
bioremediation methods for decreasing the amount of heavy metals in
the environment has attracted increasing attention. Among all the
methods, the use of living organisms to absorb pollutants and remove
heavy metals from the environment is quite interesting. Plants;
fungi; and microorganisms such as yeasts, bacteria, algae, and
cyanobacteria are usually used for the bioremediation of heavy metals.
Microorganisms are the most acceptable ones because they are easier
to work with [13,14,15].

The main advantage of using microorganisms to remove toxic
elements is their safety in human aspects. One of these microorganisms
is the bakery yeast (Saccharomyces cerevisiae), which is widely used in
the food industry [16,17].

Comparing the results of using different biomaterials revealed
that S. cerevisiae is a unique biomaterial in metal biosorption
despite its mediocre capacity [18]. The advantages of using
S. cerevisiae for the biosorption of heavy metals are easy cultivation
in a large scale, easy growth by nonfermentation methods, use of
cheap media, easy manipulation at the molecular level, and also
high biomass production [16]. As a by-product of the fermentation
industry in a large quantity, S. cerevisiae is extensively used in
beverage and food production [19].

Several studies have shown the ability of S. cerevisiae to remove
toxic metals, recover precious metals, and clean up radioactive
elements from aqueous solutions. Some studies have proved the
removal of lead (Pb) [20], cadmium (Cd) [21], zinc (Zn) [22],
mercury (Hg) [23], nickel (Ni) [24], arsenic (As) [25], chromium
(Cr) [26], gold (Au) [27], platinum (Pt) [28], and uranium (U)
[29] by S. cerevisiae. This microorganism is surprisingly able to
individualize different metal species on the basis of their toxicity,
such as Se (IV) and Se (VI), Sb (III), and Sb (V), as well as the
organic and inorganic Hg [30,31,32]. The use of this yeast to
remove heavy metals from foodstuff is a valuable and promising
cost-effective biotechnology. S. cerevisiae is generally considered
to be safe for human consumption [33]. Heavy metals may enter
in different stages of the food chain, and among all, Pb, Cd, As, and
Hg have harmful effects on human health [34]. The permissible
limit of these contaminants in most foods is very low, usually less
than 0.5 mg/kg [35]. Most of the studies are conducted on the
absorption of high concentrations of heavy metals by S. cerevisiae,
which is not much important in food safety [17,18,36,37]. Therefore,
the use of this biotechnology to remove the lower concentrations
of heavy metals in food still needs more research. On the other
hand, most of the studies have been conducted on removing an
individual element in synthetic media, whereas various elements are
naturally together in foods and beverages and may have synergistic
or inhibiting effects on one another.

The metal biosorption mechanism occurs through a complicated
process. Some of the important conditions for the absorption of metals
by this microorganism are being mentioned.

2. Main conditions for absorption by S. cerevisiae

2.1. Metal ion concentration

Results are available on thebiosorption of Zn [22], Ni [24], Cu [38], Cd
and Hg [39], Pb [40], Cr [41], and As [42] by S. cerevisiae. The removing
capacity of this yeast was observed in 0.2-0.3 ppm concentrations of
As [43]. The lowest absorbed concentration of Mg by the yeast was
0.8 ppm [44]. The biosorptive capacity for Cu2+ has been studied, and
the results showed the following decreasing order [45]:

S. cerevisiae N Kluyveromyces marxianus N Candida sp. N

Schizosaccharomyces pombe

S. cerevisiae treated with hot alkali was also capable of removing
various heavy metal cations such as Fe3+, Cr3+, Fe2+, Cu2+, Ni2+,
Hg2+, Pb2+, Cd2+, and Ag+ [39].

2.2. Temperature

Temperature seems to be one of the most important parameters
in the bioremediation of heavy metals [46]. In the range of 15–40°C,
the highest biosorption capacity of Pb, Ni, and Cr ions by S. cerevisiae
was observed at 25°C [16,45]. Investigation of the effect of different
temperatures (35, 45, and 55°C) on the growth rate of S. cerevisiae
showed that the growth increased with an increase in the temperature
and reached to the maximum level at 55°C [25]. Pb and Ni uptake was
reported to occur at 25 to 40°C [24]. Hg removal by a genetically
engineered bacterium, Deinococcus geothermalis, has been reported to
occur at high temperatures [46].

2.3. pH

pH is considered to be the othermost important factor in biosorption
processes. It influences the competition of metallic ions and the activity
of the biomass functional groups [39]. The biosorption of metal cations
increase with an increase in the pH; however, in high alkali medium,
sedimentation of metal complexes occur [16]. The optimum pH for the
absorption of different elements is different, for example, the optimum
pH for Cu removal by S. cerevisiae is pH 5, whereas for U, it is pH 4–5
[45,46,47]. The results showed that the maximum bioremediation of
heavy metals by this yeast occurs in pH N5 [36,48]. The solution pH
affects the amount of ionized groups in the yeast cell wall. At low pH,
an increase in the protonation in yeast cell wall ligands causes a
decrease in the adsorption of metals [18]. The maximum biosorption
of As takes place in pH 6 because of the reaction between the yeast
cell wall amino acids and As ions [25].

2.4. Inoculation rate

In different studies, 0.1 to 1.5 mg/L of S. cerevisiae has been
inoculated to the medium containing different metal ions [36,48].
Usually, the uptake of elements is reversely related to the inoculation
rate, and the absorption of heavy metals increase with a decrease in
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the yeast inoculation rate; this is because the metal ions enter into the
cell depending on their concentrations after filling the absorption sites
on the cell wall completely [49].

2.5. Glucose treatment

Glucose is a suitable source of energy for the yeasts and increases
their bioremediation capacity. Treatment of S. cerevisiae cells with
glucose enhanced the amount of heavy metal (Cd, Cr, Cu, Zn, and Ni)
removal from the electroplating effluents [49]. The yeast obtained
from the fermentation industry contains saccharides such as glucose,
sucrose, and fructose, which are considered to be inexpensive and
effective sources in removing pollutant elements. Glucose treatment
of yeast cells facilitates an adequate energy supply, which helps the
cells to accumulate substantially moremetals from the solution [36,48].

2.6. Treatment with organic solvents

Treatment of yeast cells with some organic solvents represented
an increase in metal uptake. Tetrahydrofuran, acetone, acetonitrile,
dimethylsulfoxide, and ethanol were used as organic solvents to treat
the yeast cells [36]. The organic solvents are thought to break the
yeast membrane and expose cryptic binding sites so that the
possibility of binding elements further would increase [50]. Organic
solvents affect the permeability of yeast cell walls and also reduce the
positive charge of the cationic site of the cell walls and therefore
increase metal uptake [51].

2.7. Competing ions

Some research results showed that anions and cations affect the
metal accumulation [11]. In fact, the biosorption of metal ions is
decreased by other ions present in the solution [37]. It has been
observed that biosorption of metal ions by S. cerevisiae is selective and
competitive. S. cerevisiae has higher affinity to some metal ions than
the other metal ions. The competitive results of the biosorption of
metals by S. cerevisiae are in the following order:

Hg N Zn N Pb N Cd N Co N Ni N Cu

Table 1 shows the comparative results of the biosorption of toxic
metals by S. cerevisiae. Light metal ions such as Na+, K+, and Ca2+,
which are present in industrial wastewater, have little effect on
the biosorption of heavy metals by S. cerevisiae, thus indicating
that the affinity of this yeast for light metal ions is less than that for
heavy metal ions [16]. The biosorption capacity decreased in the
presence of sulfate, chloride, phosphate, and carbonate, as well as
ethylenediaminetetraacetate (EDTA), because of their ability to form
complex with the metal ions [52].

The bioremediation of toxic metals such as Cd [20], Hg [23], Pb
and Ni [24], Cu [38], and Zn and Co [53] has also been studied.
The biosorption of manganese from groundwater by S. cerevisiae has
also been studied [54]. Manganese may enter the surface water,
groundwater, and soil and cause contamination [55,56,57,58]. Eleven
Table 1
Comparison of toxic metals that were biosorped by S. cerevisiae at 25°C.

Toxic metals Uptake capacity (mg/g)a Optimal pH References

Hg 55.76 5.4 [23]
Zn 30.27 5.5 [53]
Pb 24 5.8 [24]
Cd 20.91 5.8 [20]
Co 14.50 5.2 [53]
Ni 13.50 5.2 [24]
Cu 4.45 5.5 [38]

a mg metal/g of dry weight biomass.
living and dead forms of S. cerevisiae yeast strains have been
monitored for the bioaccumulation and biosorption of manganese
from aqueous solution [59]. The live form of S. cerevisiae F-25 has been
observed to be highly biosorbent for Mn2+ (22.5 mg of Mn2+ was
biosorbed). The optimum conditions for the highest Mn2+ biosorption
by S. cerevisiae F-25 were 4.8 mg Mn2+/l for 30 min at pH 7 at 30°C
[37,60]. The bioremediation of As from water using S. cerevisiae has
been evaluated. The yeast was grown in YEPD medium, and the As
synthetic solution was prepared in the concentration of 1.5 mg/l. The
maximum removal of As (90.46%) was observed in pH 6 at 55°C.
The use of S. cerevisiae is highly efficient for As removal from the
contaminated water [25,61,62]. Another research was carried out on
As biosorption by S. cerevisiae. The maximum biosorption capacity was
62.908 μg/g at 35°C and pH = 5 at biosorbent dosage of 5 g/l. The
reaction was endothermic and spontaneous [33,63]. S. cerevisiae has
been also used for Ni removal [64]. The bioremediation process was
12 g of dry weight/l of yeast cells at 45°C and pH 6, and the results
showed 89% of Ni removal. The use of the cells of S. cerevisiae is
considered to be an alternative method for Ni removal from industrial
electroplating wastewater [18,65]. S. cerevisiae has been used for the
biosorption of copper from the aqueous solution. This yeast was
immobilized on the surface of chitosan-coated magnetic nanoparticles
(SICCM) and used as a magnetic adsorbent for Cu [29]. The optimal
pH for Cu absorption was pH 4.5. At this pH, the negative charge
density on the biomass surface increased, which in turn caused more
metal adsorption sites and therefore more adsorption [38,54,66]. The
highest removal efficiency of 96.8% was obtained after 1 hour, which
was noticeably higher than that for other Cu adsorbents. Therefore,
SICCM can be a modern alternative to conventional adsorbents for
the removal of heavy metals from wastewater [67]. The effect of
S. cerevisiae on the biosorption of Cd, Cu, Pb, and Zn has been studied
in another project [68,69]. The optimum pH was pH 5. Treatment of
yeast cells with 10–20 mM glucose increased the uptake of all metals.
THF showed the highest and DMSO represented the lowest capacity as
organic solvents in metal uptake by the yeast cells [70]. By increasing
the biomass, the metal uptake was increased because of an increase in
the binding sites of the biomass [71]. Zn uptake was more sensitive to
enhancing the biomass than other metals [22,72]. Two strains of
S. cerevisiae, ATCC 834 and ATCC 24858, were compared in terms of
Cd uptake. The specific surface area of ATCC 834 was larger than that
of ATCC 24858. The outer mannan layer of ATCC 24858 cells was
thinner than that of ATCC 834. The larger specific surface layer and the
thicker mannan layer caused larger Cd uptake capacity on the ATCC
834 strain. The optimum temperature was at 30°C, and by increasing
the pH from 7 to 9.5, the Cd biosorption was increased [73,74].
In another study, the capacity of eight different yeast species was
compared in terms of Cd absorption [75,76,77]. The results showed
that S. cerevisiae was the most sensitive strain for metal uptake
and had the highest accumulation of Cd ions in the cell walls and
intracellular compartments (cell and cytosol). Therefore, S. cerevisiae is
a suitable yeast for metal absorption [78,79,80].

3. Conclusion

Heavy metal pollution has turned into one of the most serious
environmental problems in recent years. The last decade studies have
made a better understanding of metal biosorption by using biosorbents.

The findings of this study revealed the capability of S. cerevisiae
in removing heavy metals from foodstuffs. It is an effective and
inexpensive biosorbent and has good sorption characteristics for
several heavy metals. Decreasing the nutrients present in the media
does not actually affect the growth of S. cerevisiae.

The removal of Pb, Cd, As, andHg, the four toxic elements in the food
industry, by S. cerevisiae has been studied previously. The gap in
research is the permissible concentrations of these elements and
considering them in the bioremediation of heavy metals in foodstuffs.
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This study can be optimized and applied in various food and drink
industries to reduce and remove heavy metals in foodstuffs. This study
can be optimized and applied in various food and drink industries to
reduce and remove heavy metals in foodstuffs. Particularly, it can be
concluded and recommended that in countries with high heavy metal
pollution in wheat, the use of S. cerevisiae as sourdough or other
forms in food matrix (e.g., bread) can be an easy native solution for
overcoming the problem of their accumulation in the human body.
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