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ABSTRACT

Malolactic fermentation (MLF) is a process in winemaking responsible for the conversion of L-malic acid to
L-lactic acid and CO,, which reduces the total acidity, improves the biological stability, and modifies the aroma
profile of wine. MLF takes place during or after alcoholic fermentation and is carried out by one or more
species of lactic acid bacteria (LAB), which are either present in grapes and cellars or inoculated with
malolactic starters during the winemaking process. Although the main bacterium among LAB used in
commercial starter cultures for MLF has traditionally been Oenococcus oeni, in the last decade, Lactobacillus
plantarum has also been reported as a malolactic starter, and many works have shown that this species can
survive and even grow under harsh conditions of wine (i.e., high ethanol content and low pH values).
Furthermore, it has been proved that some strains of L. plantarum are able to conduct MLF just as efficiently as
0. oeni. In addition, L. plantarum exhibits a more diverse enzymatic profile than O. oeni, which could play an
important role in the modification of the wine aroma profile. This enzymatic diversity allows obtaining several
starter cultures composed of different L. plantarum biotypes, which could result in distinctive wines. In this

w::zmaking context, this review focuses on showing the relevance of L. plantarum as a MLF starter culture in winemaking.
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1. Introduction Lactobacillus rhamnosus, Lactobacillus buchneri, Lactobacillus collinoides,

1.1. Malolactic fermentation (MLF) in wine production

Winemaking is a complex microbial process in which yeasts, mainly
Saccharomyces cerevisiae, consume the sugars present in the grape
to yield ethanol, a process known as alcoholic fermentation, which leads
to the transformation of must into wine. During alcoholic fermentation,
the natural development of lactic acid bacteria (LAB) correlates with their
sensitivity to increasing ethanol concentrations and resistance to low pH
values. After the completion of alcoholic fermentation, yeast activity
diminishes and wine LAB are able to grow under the stimulation of the
yeast lysis products, although wine conditions are quite restrictive and
only a few species are able to survive [1]. The survival of LAB plays a
significant role in winemaking, thus guiding a secondary biological
process known as malolactic fermentation (IVLF). This process converts L-
malic acid to L-lactic acid and CO, and is carried out by one or more LAB
species. MLF produces the deacidification of wine, with a concomitant
increase in the pH, which is a particularly desirable effect in wines with
high acidity. MLF also improves the microbial stability of wine, by the
removal of L-malic acid as a possible carbon substrate, and leads to the
modification of the wine aroma profile, which is linked to different
enzymatic activities [2,3,4,5]. MLF could take place either spontaneously
or by the addition of malolactic starter cultures [6,7,8,9]. The wine LAB
that are naturally present in the must can perform MLF spontaneously
after growing up to a critical population that is necessary to start and
achieve malic acid degradation. Spontaneous MLF is the result of
different LAB populations growing in the must and depends on both
the grape sanitary conditions and the physicochemical characteristics of
the wine [10]. Similarly, spontaneous MLF could have unpredictable
results such as a considerable increase in the volatile acidity, the
consumption of residual sugars, and the formation of undesirable
metabolites including biogenic amines [11]. For these reasons, the use
of starter cultures in winemaking is a common practice because of the
technological advantages such as the reduction of time to complete
MLF and the reduction of spoilage risks of wine [12]. In the last decades,
the commercial availability of several starter cultures has allowed the
widespread use of this practice among wineries.

Oenococcus oeni is probably or popularly the main species of LAB best
adapted to overcome the harsh environmental wine conditions and is
therefore present in most of the commercial MLF starter cultures.
Nevertheless, Lactobacillus plantarum is also widely used in food
biotechnology of fermented products and has begun to have relevance in
the winemaking process. Like other Lactobacillus, L. plantarum is able to
survive under harsh conditions of the wine [9,11,13,14] and, as
mentioned below (see Section 6), some commercial starter cultures of L.
plantarum strains have been released in the last decade.

1.2. L. plantarum and its presence in wine

The genus Lactobacillus, which belongs to the phylum Firmicutes,
class Bacilli, order Lactobacillales, and family Lactobacillaceae [15],
contains a large number of species and strains that exhibit important
properties in an applied context, especially in fields of food and
probiotics [16]. In particular, several Lactobacillus spp. have been
identified in wine. These include L. plantarum, Lactobacillus brevis,

Lactobacillus paracasei, Lactobacillus fermentum, Lactobacillus casei,
Lactobacillus guizhouensis, Lactobacillus kunkeei, Lactobacillus lactis,
Lactobacillus delbrueckii, Lactobacillus sakei, Lactobacillus mali,
Lactobacillus curvatus, and Lactobacillus lindneri, among others [8,9,
17,18]. Lactobacillus spp. possess fermentative metabolisms and
can be divided into three main metabolic groups according to
their metabolite production from glucose/pentose: obligatory
homofermentative, facultative heterofermentative, and obligatory
heterofermentative [19,20]. L. plantarum is homofermentative
for hexose and heterofermentative for pentose [20,21], and given
that wine is usually composed of a range of monosaccharides and
disaccharides, such as arabinose, glucose, fructose, and trehalose
[22], the main sugars used by this species in the fermentation are
glucose, fructose, and arabinose [20,21].

The classification of Streptobacterium plantarum [23], currently
called L. plantarum, was originally applied to a series of bacteria
widely distributed in fermenting plants and animal products isolated
from butter, milk, cheese, fermenting potatoes, beets, cabbage, and
dough [24] and also normally found in high-acid ciders [25] and wines
[8,9,17,18]. Valdés La Hens et al. [9] showed that L. plantarum is
present at all stages of MLF, together with O. oeni. Moreover,
L. plantarum is widely used in industrial fermentation and processing
of raw foods and “generally recognized as safe” (GRAS), and it has a
qualified presumption of safety (QPS) status [15].

Regarding winemaking, L. plantarum has been repeatedly isolated from
certain wines (Table 1), especially owing to its ability to tolerate low pH and
high alcohol content [21,26]. In the beginning of winemaking, the
identification of the LAB present in wine was based on phenotypic and
biochemical tests; nevertheless, the development of molecular and
genetic characterization tools, such as RAPD-PCR [9,17,27] or pulsed-field
gel electrophoresis (PFGE) [28,29], has greatly increased the quality of
identification, thereby allowing a better discrimination of L. plantarum
from other LAB species that are genetically similar [7,18].

2. L. plantarum strains: Technological advantages as malolactic
starter cultures

2.1. Tolerance to wine-like stress conditions

One of the main stress factors of wine is its low pH because it affects
the metabolism of sugars and has a selective effect on LAB species.
Although most studies agree that the response of L. plantarum to
stress factors is variable and strain dependent, several studies have
shown the ability of L. plantarum to efficiently grow at low pH [11,14,
30,31,32,33]. For example, G-Alegria et al. [33] described that several
L. plantarum strains from Spanish Rioja red wines were able to
successfully grow at pH 3.2 on MLO medium and reach population
values similar to those of O. oeni strains. In addition, Berbegal et al.
[34] showed that 62 L. plantarum strains isolated from Nero di Troia
wines were able to grow in MRS medium at pH 3.5 under different
conditions (combined with ethanol 8-12% (v/v), supplemented with
glucose, fructose, and L-malic acid). In a recent work, Lucio et al. [35]
studied the consequences of the interactions of different combinations
of L. plantarum and S. cerevisiae during white grape must fermentation
and demonstrated that managing wine acidity (which changes as a
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Table 1
Isolation of L. plantarum from wine.
Isolation source Identification technique Country Reference
Bitter wine and cider Traditional microbiology, biochemical tests Denmark [115]
Wine and grape must Traditional microbiology, biochemical tests USA [116]
Ciders Traditional microbiology, biochemical tests England [25]
Wines Traditional microbiology, biochemical tests Australia [117]
Red wine: Carignan and Cabernet Sauvignon Traditional microbiology, biochemical tests Israel [118]
Cinsaut wine Traditional microbiology, biochemical tests South Africa  [119]
Cabernet Sauvignon wine and Cabernet grapes, Colombard and Ugni Blanc grapes Traditional microbiology, biochemical tests France [120]
Wines: Merlot and Cabernet Colony hybridization France [121]
Red wine 16S rDNA-ARDRA Japan [122]
Nero di Troia wine recA and 16S rRNA gene sequencing Italy [123]
Wine must API 50CH, PCR species specific for the recA gene Italy [124]
Red wines 16S rRNA gene sequencing Italy [94]
Red wine: Tempranillo API 50 CHL system and species-specific PCR, Spain [33]
Pulsed-Field Gel Electrophoresis (PFGE).
Brandy 16S rRNA gene sequencing South Africa  [30]
Red wine: Cencibel PFGE Spain [125]
Red wine: Cabernet Sauvignon grape berries Sequence of segments of the 16S rDNA Australia (8]
Wines Multilocus sequence typing, ribotyping, and RFLP of Spain [126]
PCR 16S-23S rDNA (ISR)
Red wine: Merlot, Cabernet Sauvignon, Cabernet Franc, and Petit Verdot. PCR-DGGE rpoB gene France [127]
White wine: Sémillon and Sauvignon Blanc
Red wine: Tempranillo Species-specific PCR Spain [11]
Grape musts and wines Chromosomal DNA digestion and PFGE Spain [109]
Wine: Pinotage Species-specific PCR South Africa  [61]
Red wine: Mavroliatis and Sefka DGGE-PCR 16S rRNA Greece [128]
Mencia musts and wines 16S rRNA sequencing and 16S rDNA-ARDRA Spain [129]
Red wine: Nero di Troia 16S rRNA and rec A gene sequencing Italy [83]
Palm wine 16S rRNA and gyrB genes Burkina Faso [130]
Tempranillo Wine Species-specific PCR-16S rRNA sequencing Spain [28]
Wines: Montepulciano; Piedirosso, Pentro d'Isernia, AglianicoTaurasi, Tintilia PCR-RFLP 16S rRNA gene sequencing Italy [131]
Wines and Greek grapevine: Vilana, Mandilaria, and Kotsifali Grapes of the 16S rRNA region (ARDRA) Greece [128]
Agiorgitiko (red variety)
Wines: Pinot noir and Merlot RFLP-PCR of the rpoB gene and PCR-16S rRNA gene Argentina 9]
Wine: Nero di Troia Genome sequencing (Illumina GAIIx platform) Italy [132]
Wine: Nero di Troia PCR-16S rRNA gene Italy [34]
Rice wines Metagenomics (MiSeq_System) India [133]
Must: Cabernet Sauvignon, Tempranillo, Syrah, Macabeo, Grenache, Carignan, Multiplex PCR Mexico [134]
Syrah, and Nebbiolo
Wines PCR-DGGE and 16S rRNA gene sequencing Italy [41]
Cherry wines 16S rRNA sequencing and species-specific identification China [135]
Wines: Grenache and Carignan 16S rDNA-ARDRA Spain [136]

Pinot noir wine

16S rRNA region (ARDRA) and sequencing of the 16S rRNA gene Argentina [27]

result of climatic change) is possible by co-inoculating L. plantarum
and S. cerevisiae. However, they also found that the growth of
LAB strains was severely limited after yeast inoculation [35]. Finally,
Bravo-Ferrada et al. [17] found that eight L. plantarum strains from
Patagonian wines were able to grow in MRS medium with a pH
ranging from 3.5 to 3.8.

Another stress factor for the survival of LAB in wine is the presence of
ethanol. Ethanol is the main metabolite produced by yeasts during
alcoholic fermentation, which can reach a concentration higher than
12% v/v and, in certain climates, exceed 16% v/v [17,33,36]. Ethanol
can interact with the polar head group of membrane lipids, thereby
inducing membrane disorganization and affecting several biochemical
processes such as proton motive force, all of which leads to the loss of
intracellular compounds and, eventually, bacterial death [37,38].

For this reason, one of the first steps to select the best bacterial strain
for winemaking is to determine its ability to grow in MRS medium
containing ethanol [17,34,39]. Berbegal et al. [34] and Bravo-Ferrada et
al. [17] showed that different strains isolated from the same wine but
in the presence of different ethanol concentrations have a distinct
growth rate. In the same way, a recent study conducted with 42
enological strains of L. plantarum isolated from red wines showed that
the limit growth value for 10 selected strains was pH 3.5 and 8%
ethanol [40]. Interestingly, these results are in agreement with those
obtained by several authors [34,39] but in opposition with those of
others [17,41], who reported that some strains of L. plantarum are able
to grow not only in the presence of 13% ethanol but also at pH values

ranging from 3.2 to 3.5. All these data confirm that ethanol resistance
is a strain-dependent feature.

Finally, regarding other stress factors, Bravo-Ferrada et al. [17] also
showed that several strains of L. plantarum are able to tolerate the
presence of sulfite and lysozyme (two compounds usually applied as
antimicrobial agents in the wine industry) in the concentration range
used in winemaking.

2.2. Wine inoculation and acclimation

In addition to the natural ability of bacterial strains to tolerate the
harsh wine conditions, some practices such as culture acclimation
could improve their viability and enological properties. Several
acclimation media have been described for malolactic LAB strains by
supplementation of MRS medium with different ethanol concentrations
(from 4 to 10% v/v), low pH (3 to 5) [40] or by the synergistic effect
of ethanol and low pH [12,42,43]. For L. plantarum in particular,
acclimation in ethanol 6% and 10% v/v, pH 4.5, in the presence of a high
glucose and fructose concentration has been described as a favorable
medium for the preadaptation of several strains of this species,
with positive effects on the subsequent survival and L-malic acid
consumption under wine conditions [27,44,45,46].

Bravo-Ferrada et al. [44] studied the effect of ethanol content during
acclimation of Patagonian L. plantarum enological strains and found that
direct inoculation of the L. plantarum strains tested in a wine-like
medium (14% v/v ethanol, pH 3.5) induced a rapid disruption of the
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membrane integrity and a decrease in the cell viability of more than six
orders of magnitude in 24 h. However, when cells were previously
acclimated in the presence of 6% and 10% v/v ethanol, their membrane
showed lower damage after wine inoculation, and consequently, the
strains showed an improvement in their viability and L-malic acid
consumption after 15 d of incubation.

Bravo-Ferrada et al. [17] also found a higher decrease in the
unsaturated/saturated (U/S) fatty acid ratio after acclimation, which
was more drastic at higher ethanol concentrations. This decrease in
the U/S ratio was concomitant with a decrease in the hydrocarbon
chain lengths. Furthermore, the increase in L-malic acid consumption
was correlated with the decrease in the U/S ratio and the decrease
in the chain length. Nevertheless, the percentage of L-malic acid
consumption was strain specific [13].

In this context, it is important to emphasize that the nutritional
requirements of L. plantarum are lower than those of O. oeni. Further,
the growth kinetics of L. plantarum is faster than that of O. oeni.
Supporting these facts, Brizuela et al. [27] found that some
L. plantarum strains isolated from Patagonian wines were able to
conduct MLF with lower inoculum sizes than O. oeni strains and
without the need for a previous acclimation treatment, which is
technologically relevant for biomass production at low cost.

3. L. plantarum strains: Enological advantages as malolactic starter
cultures

L. plantarum has a diverse array of enzymes that could have positive
effects on the organoleptic properties of wine [21,47]. In addition to the
malolactic enzyme itself, some of the most interesting enzymes that
influence wine flavor include glycosidases, p-glucosidases, esterases,
phenolic acid decarboxylases, and citrate lyases [48,49,50,51].
Enzymes are also involved in improving color in red wines and can
solve problems associated with wine filtration such as tannase
activities. Therefore, in enological L. plantarum strains, it is crucial to
analyze their potential to influence wine composition and hence the
processing, organoleptic properties, and the quality of the wine.

3.1. Malolactic activity

As already pointed out above, the main role of LAB in wine is MLF.
From the metabolic point of view, MLF is only a decarboxylation
process where the only apparent benefit to the cell would be the
increase in the external pH. However, from an enological point of
view, this deacidification leads to an improvement in wine quality,
thus reducing the astringent taste of malic acid [52].

The gene coding for the malolactic enzyme seems to respond
differently for L. plantarum [14] and O. oeni [53], depending on the
stress conditions in the medium. Miller et al. [14] investigated
the influence of pH and ethanol on the expression of the structural
malolactic enzyme gene from L. plantarum in a synthetic wine
medium and found that the expression of this gene was inducible by
the presence of malic acid, with an increased expression in the middle
of MLF. The expression of the malolactic enzyme was also increased at
low pH values and decreased in the presence of ethanol.

Bravo-Ferrada et al. [17] evaluated the malolactic enzyme activity
directly in a wine-like medium by inoculation of selected strains and
analyzed the levels of malic acid consumed. They found that eight
L. plantarum isolates were able to consume almost all the malic
acid present after only 4 d of incubation. du Toit et al. [21] found
similar results, where three of seven L. plantarum isolates were able
to complete MLF (i.e., consume all the malic acid present) in the
synthetic wine medium, in 44 d. Finally, Brizuela et al. [27,54] showed
that some L. plantarum strains isolated from red wines exhibit a higher
ability to consume malic acid than O. oeni, even without any
preacclimation treatment, with the consequent economic advantages
regarding the putative production of the starter cultures.

3.2. Glycosidases

Odorless nonvolatile glycosides are an important pool of compounds
found in grapes and wine that can contribute to wine aroma [55,56].
Most commercial glycosidase preparations are crude extracts prepared
from fungi rather than from bacteria. Glycosidase activities that can
affect wine aroma have been detected in Oenococcus, Lactobacillus, and
Pediococcus [48,49,57]. Researchers who investigated the effects of
glycosidase activities of L. plantarum concluded that this activity is
influenced by some environmental factors such as pH, temperature,
and the presence of sugars and ethanol [48,57]. Bravo-Ferrada et al.
[17] analyzed the glycosidase activity in eight selected Patagonian
L. plantarum strains and found that all of them were positive for this
activity, although with quantitative differences among the strains.

3.3. Esterases

Esters are a group of volatile compounds that can positively
contribute to wine flavor, and changes in their concentration have the
potential to influence wine quality [58]. The esterase activities in
L. plantarum were described for the first time by Gobbetti et al. [59].
Later, studies performed by Mtshali et al. [60] on Lactobacillus strains
isolated from South African grape and wine samples demonstrated
that 60% of the strains tested possessed genes coding for esterases. In
particular, all L. plantarum species studied were positive for some of
the genes that codify this activity. Similar results were reported by
Lerm et al. [61], who focused on the study of L. plantarum strains also
isolated from a South African wine. At the end of the study, the
authors selected a total of six L. plantarum strains, all of which were
positive for a putative esterase gene.

The content of some ethyl esters analyzed in some studies showed
significant difference among wines fermented by L. plantarum and
0. oeni strains [32,62]. In addition, alcohol acyltransferase activity has
also been recently identified in L. plantarum as a mechanism to
increase ester concentrations and subsequently impact the fruity
aromas of red wine [63].

3.4. Metabolism of amino acids and other compounds related to flavor

The catabolism of amino acids by wine LAB is expected to have a
significant impact on wine quality, given that a range of compounds
such as aldehydes, alcohols, and acids, in addition to amines, can be
produced. Few studies have been conducted on the catabolism of
amino acids by enological L. plantarum.

The main amino acid present in wine is arginine. The concentration of
arginine in grape juice ranges from a few hundred mg L' to 24 g L™,
Liu and Pilone [64] studied the catabolism of arginine by wine LAB and
its practical significance in detail and found that arginine-degrading
wine LAB catabolize arginine through the arginine deiminase pathway
(ADI) [65]. One of the main concerns about arginine metabolism
by wine LAB is the formation of ethyl carbamate precursors because
ethyl carbamate, also referred to as urethane, is a known animal
carcinogen found in fermented foods and beverages, including wine
[64] (see Section 4.2).

Liu [50] also observed that L. plantarum also uses tyrosine and
phenylalanine during MLF. Although the metabolic pathway of the
two amino acids in this species of Lactobacillus is not known, it is
possible that they are decarboxylated to form the corresponding
amines, i.e., tyramine and phenylethylamine [50], given the prevalence
of the two amines associated with lactobacilli in wine (see below).

Pozo-Bayén et al. [32] analyzed the changes in 21 amino acids
during the MLF carried out by strains of O. oeni and L. plantarum in
a Tempranillo red wine and observed that methionine, tryptophan,
and threonine were degraded by L. plantarum but not by O. oeni.
These results suggest a degree of metabolic diversity in both LAB
groups because wines showed specific characteristics depending on
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the LAB strain. This suggests that the metabolism of these
compounds is strain dependent, thus showing high variability
among species.

Regarding other compounds related to wine flavor, sulfur
compounds show different sensory properties depending on their
concentration and the sulfur atom molecular position; some of them
contribute negatively to the wine quality, whereas some others have a
positive effect on the aromatic properties of wines. The presence of
these compounds in wines has two main origins: (1) nonenzymatic
processes such as the chemical reactions of sulfur compounds during
winemaking processes and storage and (2) enzymatic processes
including the degradation of sulfur contained in amino acids during
fermentation by yeasts and LAB. The two main amino acids involved
in the production of volatile sulfur compounds with a negative impact
on wine quality are methionine and cysteine. Grape juice is usually
deficient in these two amino acids [66]. However, LAB and yeasts are
able to synthesize methionine and cysteine from inorganic sulfate or
sulfite sources [67], thus making them accessible for LAB metabolism
[66,68].

Regarding wine aroma, diacetyl is the most important aroma
compound from LAB, and its production and modulation during
MLF have been well studied [69]. The buttery character in both red
and white wines is due to the formation of diacetyl through the
metabolism of citrate, a finding first reported by Guymon and Crowell
[70]. The diacetyl content in wine can be influenced by several factors
such as the strain of malolactic bacteria, inoculation rate, wine type,
pH, aeration, and SO, addition [69,71]. Unfortunately, when this
compound is present in wine at high concentrations, it can also be
considered as an off-flavor. This suggests that wines that undergo MLF
dominated by strains with or without low transcriptional levels of
citrate lyase will have very low diacetyl concentrations, and therefore
better organoleptic characteristics. In this context, it has been reported
that some strains of L. plantarum and other Lactobacillus spp. do not
possess citrate lyase complex genes [60,72]. Thus, future studies are
needed to elucidate the concentrations of citrate metabolism products
necessary to obtain a wine of high aromatic quality.

Other compounds related to wine aroma are phenolic acids, which
are important aromatic acids and natural constituents of plant cell
walls. Some volatile phenols, particularly vinyl and ethyl guaiacol
(generated from ferulic acid), naturally contribute to the aroma in
wines [73]. Depending on their concentration, these compounds can
contribute to wine aroma either positively or negatively, owing to
their low detection thresholds and their distinct flavor.

The production of volatile phenols in wine is usually associated with
the spoilage caused by the yeast Dekkera bruxellensis [74]. By using PCR
enzyme-specific primers for the pad (phenolic acid decarboxylase)
gene, Mtshali et al. [60] screened 120 South African Lactobacillus
strains (including L. plantarum) and found that more than 70% of the
strains studied possessed the gene. Lerm et al. [61] also reported the
presence of a gene coding for PAD in L. plantarum strains isolated from
South African wine and also found that L. plantarum strains might
have an added beneficial influence on the wine aroma profile to a
larger extent than O. oeni because of the cache of enzymes (serine
protease, esterase phenolic acid decarboxylase, p-glucosidase, and
citrate lyase). As far as we know, the metabolism of phenolic acids by
L. plantarum in wine has not been characterized and thus warrants
further studies.

4. Other metabolic actions that produce undesirable compounds
for wine quality

In some cases, the development of LAB can have negative
consequences on the quality of wines. Here, we will focus on two
groups of substances released by LAB during and after winemaking,
which are undesirable for the health of the wine consumer: biogenic
amines and ethyl carbamate precursors [75].

4.1. Biogenic amines

Biogenic amines are basic nitrogenous compounds formed mainly
by the decarboxylation of the corresponding amino acid through
substrate-specific enzymes present in microorganisms [76]. High
concentrations of biogenic amines can cause undesirable physiological
effects in sensitive humans, especially when alcohol and acetaldehyde
are present [77].

Although food-fermenting LAB are generally considered to be
nontoxinogenic or pathogenic, some can produce biogenic amines
[78]. Currently, there is a growing concern regarding the limits
of biogenic amines in wines because of their potential health
implications [79]. Although not regulated uniformly worldwide,
biogenic amines are generally confronted under regulations similar
to those for allergens. As a matter of fact, wines containing high
amounts of histamine are rejected in certain markets owing to the
recommended or suggested limits of this compound [80].

The concentrations of biogenic amines in wine may be influenced
by their presence in grapes, which is in turn determined by factors
such as soil potassium deficiencies, grape variety, geographical region,
and vintage. The concentrations of precursor amino acids are
influenced by winemaking practices such as grape skin maceration.
The formation of biogenic amines is also determined by wine
parameters and components, of which pH, ethanol, SO,, and pyridoxal
5’-phosphate have the most important effect on the diversity of
microorganisms, decarboxylase enzyme activity, and decarboxylase
gene expression. The concentration of biogenic amines is dependent
on the wine type and style, but the presence of biogenic amines seems
to be attributed, in all cases, to the presence of LAB [80].

In this context, for any strain being considered for use as a starter
culture, the inability to produce biogenic amines is an important
characteristic. Several species of LAB have been characterized as
biogenic amine producers in wine directives worldwide.

Bauza et al. [81] and Landete et al. [82] screened five L. plantarum
strains from Spanish red wines for their ability to form tyramine and
phenylethylamine by different methods (plate medium, HPLC, and
PCR) and found that all strains were negative for these amines.
In addition, these authors demonstrated that the ability to degrade
biogenic amines is a species-specific feature. Capozzi et al. [83]
selected two L. plantarum strains (namely, NDT 09 and NDT 16) from
an Italian red wine undergoing MLF and showed that in addition to
not producing biogenic amines, they were able to degrade biogenic
amines such as putrescine and tyramine. Similarly, Xia et al. [84]
showed that the co-inoculation of strains of L. plantarum and
Staphylococcus xylosus induced a significant reduction in putrescine,
tyramine, and histamine. These results show that inhibiting the
growth of indigenous LAB and inoculating commercial selected strains
unable to produce biogenic amines may be a potential alternative in
winemaking [85].

Additionally, it is usually accepted that L. plantarum does not secrete
enzymes responsible for the production of the most common amines in
wines [41,61,79,83,86,87,88]. Arena et al. [89] reported that a strain
of L. plantarum isolated from wine and harboring the tdc gene was
able to produce tyramine in wine. However, these authors also
claimed that the ability of the tyramine-producer L. plantarum is not
widespread in fermented food and is confined only to L. plantarum
strains harboring the tdc gene [89], thus reinforcing the idea that a
screening for this gene is mandatory for strains considered as putative
MLF starters.

4.2. Ethyl carbamate

Ethyl carbamate, also referred to as urethane, is a genotoxic
compound both in vitro and in vivo; it binds covalently to DNA and is
an animal carcinogen. This compound is formed by the reaction
between ethanol and N-carbamyl compounds such as urea, citrulline,
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and carbamyl phosphate, at acidic pH, and its formation is dependent on
the concentration of the reactant. This reaction is favored by increasing
temperature and acidic pH. The content of ethyl carbamate is therefore
higher in wines that have been stored for a long time and in which
temperature has not been well controlled [75,90]. In some wines,
ethyl carbamate has been detected at very low concentrations
(approximately 20 pg L™'); therefore, it is important to keep the level
of ethyl carbamate in wine as low as possible.

Arginine degradation could conduce to the production of citrulline
and the potential formation of ethyl carbamate. In this context, several
authors have reported the ability of some L. plantarum strains to
degrade arginine in various biological systems such as fish [91] and
orange juice [92], particularly in wine [93]. arc genes, which encode
the three enzymes of this pathway in LAB, are clustered in an operon-
like structure: arcA (ADI), arcB (OTC), and arcC (CK) [71]; their
presence has been demonstrated in L. plantarum in different reports
[61,94]. Romero et al. [90] also studied the degradation of arginine
and the production of citrulline and the potential formation of ethyl
carbamate in O. oeni and L. plantarum and found that in the case
of the L. plantarum strain CECT 5671 isolated from a Tempranillo
wine, arginine was not degraded and citrulline was not produced;
interestingly, the potential ethyl carbamate obtained was comparable
to that obtained using the Oenococcus strains studied, which are able
to degrade arginine and produce citrulline. These results suggest
that the degradation of arginine in L. plantarum is probably strain
dependent as already reported for some strains of O. oeni [93].

4.3. Production of other compounds that may impart undesirable
characteristics to wine

Acetic acid imparts an unpleasant odor and taste to the wine, thus
resulting in highly poor-quality wine. In this context, as pointed out
above, because of its homofermentative metabolism, L. plantarum
(through the Embden-Meyerhof pathway) produces primarily lactic
acid but not acetic acid during the consumption of hexoses. However,
some acetic acid can be produced during the consumption of pentoses
[95]. Despite this fact, L. plantarum is preferred to O. oeni because of
the heterofermentative pathway of the Oeni ferment hexoses (the
main carbon source in the must [59]) not only in lactic acid but also in
acetic acid.

5. Preservation processes

In addition to the ability of a bacterial strain to survive the conditions
of wine, the preservation of a strain is an important technological
property when choosing a new malolactic starter culture. The most
used methods for small- and large-scale storage of L. plantarum for
long periods are freezing and freeze-drying.

The preservation of probiotic L. plantarum strains has been widely
studied. This species has been found to be highly resistant to the
dehydration process [96,97,98,99], as well as highly resistant to the
freeze-drying process [33]. However, the effects of the preservation
process of L. plantarum and its posterior inoculation in the wine
medium have been poorly studied. The main difficulty in freeze-
drying and subsequent inoculation is the conservation of the
membrane properties of the bacteria because the membrane is the
first object of damage after drying. Maintaining the integrity of
the membrane in a medium with high ethanol content (such as wine)
is mandatory for bacterial survival.

For this purpose, several agents such as sugars or amino acids are
added to the drying medium to protect cells. Among these, trehalose,
sucrose and glutamate are extensively used to preserve Lactobacillus
and O. oeni strains [100,101,102,103]. These compounds can form
hydrogen bonds with the polar groups of the lipid membranes and
proteins, thus maintaining their structure by the water replacement
hypothesis [104].

Bravo-Ferrada et al. [13] studied the effect of trehalose, sucrose, and
glutamate as protective agents and the effect of acclimation treatments
on freezing and freeze-drying of three L. plantarum strains. They found
that the survival of preserved L. plantarum strains in synthetic wine
was strain and process dependent, with freeze-drying being the most
drastic process, with a higher percentage of damaged membranes.
Acclimation in the presence of low ethanol concentration improves
the viability after the freeze-drying process. Similar results have been
reported for O. oeni strains [105,106]. On the other hand, freezing
temperatures affect the resistance after wine inoculation and the
viability of L. plantarum (previously acclimated) frozen at —80°C,
without showing any significant differences with control cells and
that the acclimation process remarkably improves survival under
wine inoculation of cells frozen at —20°C and freeze-dried cells
[44]. In all the conditions assayed, the increase in the ethanol
concentration present in the wine had a strong impact on the survival
of L. plantarum, the impact being significantly lower at 14% than at 13%.

However, acclimation at high ethanol concentrations of some
L. plantarum strains was detrimental to freeze-drying. The atomic
force microscopy results showed that acclimation with high ethanol
concentrations leads to changes in the bacterial surface (an increase in
the zeta potential), thereby making cells more susceptible to surface
damage after freeze-drying [45].

In conclusion, preservation studies indicate that the best conditions
for long-term storage of L. plantarum starters for direct inoculation and
for the success of MLF must be previously optimized for each strain.

6. Commercial starter cultures of L. plantarum

As pointed out above, inoculation with starter cultures reduces the
potential of spoilage by other LAB and/or bacteriophages, ensures a
rapid onset of MLF, and provides better control over the production of
aromatic compounds and therefore of the wine flavor [2,107]. Most
starter cultures commercially available for MLF are made using strains
of 0. oeni for the simple reason that it was believed that this LAB was
the most reliable bacterium for the completion of MLF. However,
as mentioned, some Lactobacillus species have many favorable
characteristics that would make them suitable candidates for their use
as malolactic starters [61]. Among them, L. plantarum has been shown
to be the best candidate for its use in winemaking processes. As
shown in previous sections of this review, L. plantarum possesses
several characteristics that make it the possible next generation of
MLF starter culture, not only because of its resistance to wine harsh
conditions (see Sections 3 and 4) [21] but also because it does not
produce acetic acid from carbohydrates, it has a more diverse array of
enzymes that could lead to more complex production of aroma
compounds (see Section 4) [60,62], and it can produce bacteriocins
(plantaricins) that can reduce the participation of other LAB during
MLF [108,109]. Moreover, some L. plantarum strains are able to inhibit
spoilage by bacteria, degrade biogenic amines, grow in less time
with less nutritional requirements, and show greater resistance
to preservation [21,83,110]. Interestingly, the application of a
Lactobacillus spp. as a starter culture is not particularly novel. Indeed,
the Lactobacillus strain ML-30 was successfully used in inoculation
timing trials in Pinot Noir in the early 1960s [111], and a commercial
L. plantarum strain (Viniflora plantarum, CHR Hansen) was promoted
in the late 1980s [112] for inoculation before alcoholic fermentation
[113].

In the last decade, four commercial malolactic starters using
L. plantarum have been released in the market, namely, Lallemand®
culture V22, ML Prime™, Anchor NT 202 Co-Inoculant, and CHR
Hansen Viniflora ® Nova™, The Lallemand® culture V22 is a pure L.
plantarum culture of European origin, which can be used both for co-
inoculation during alcoholic fermentation and for sequential
inoculation after alcoholic fermentation [26]. The culture named ML
Prime™, also released by Lallemand, is made from a pure Lactobacillus
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culture with facultative heterofermentative metabolism. The
manufacturer claims that the selected strains convert glucose or
fructose only to lactic acid but not to acetic acid, therefore preventing
an increased production of volatile acidity during MLF. This starter is
recommended for fast and reliable MLF in wines of acidic pH (pH >3.4)
(http://www.lallemandwine.com/wp-content/uploads/2015/08/2015-
ML-Prime-east.pdf). The Oenobrands® product, which is marketed
under the Anchor brand and named Anchor NT 202 Co-Inoculant, is a
blend of selected O. oeni and L. plantarum strains from South Africa
[61]. Finally, in 2014, CHR Hansen released Viniflora® Nova™, a
L. plantarum strain that Saerens et al. [114] isolated from a screening
undertaken in collaboration with Professor du Toit at Stellenbosch
University in South Africa (http://www.chr-hansen.com). As with their
previous L. plantarum product (Viniflora plantarum), the manufacturers
recommended that this starter culture should be inoculated into grape
must before alcoholic fermentation, meaning that MLF takes place
before and during alcoholic fermentation, in an approach called
“reverse malolactic fermentation.”

The fact that four new L. plantarum starters have been released in
the last decade reinforces the idea that this bacterium could play an
important role in the wine making industry.

7. Conclusion and perspectives

This review focuses on the potential of L. plantarum as a MLF starter
culture in winemaking. The shorter incubation time and better viability
conditions found in some strains of L. plantarum make this species an
economic and easy alternative to produce malolactic starter cultures
with special potential applications in red wines.

In addition to the ability of LAB to consume L-malic acid, other
enzymatic activities of LAB related to the aroma are gaining relevance.
In this context, the genetic potential of L. plantarum to produce
metabolites that are important in wine aroma, i.e., wine aroma-related
enzyme genes, allows us to conclude that L. plantarum has an
excellent potential that would make it suitable in the future to be a
major player in the development of MLF starter cultures. It should be
pointed out that all commercial starter cultures have an aromatic
potential associated with the presence of L. plantarum. The fact that
there are only a few cultures available as commercial starters, in
addition to the increasing scientific data that support the role of
L. plantarum both in the conversion of L-malic acid into L-lactic acid
and in the formation of wine aroma, confirms that the full potential of
L. plantarum is only starting to show.
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