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Abstract Transcriptomic studies of marine organisms are still in their infancy. A partial, subtracted 
expressed sequence tag (EST) library of the Caribbean octocoral Erythropodium caribaeorum and the 
sea fan Gorgonia ventalina has been analyzed in order to find novel genes or differences in gene 
expression related to potential secondary metabolite production or symbioses. This approach entails 
enrichment for potential non-“housekeeping” genes using the suppression subtractive hybridization 
(SSH) polymerase chain reaction (PCR) method. More than 500 expressed sequence tags (ESTs) 
were generated after cloning SSH products, which yielded at least 53 orthologous groups of proteins 
(COGs) and Pfam clusters, including transcription factors (Drosophila Big Brother), catalases, reverse 
transcriptases, ferritins and various “hypothetical” protein sequences. A total of 591 EST sequences 
were deposited into GenBank [dbEST: FL512138 - FL512331, GH611838, and HO061755-HO062154]. 
The results represent proof of concept for enrichment of unique transcripts over housekeeping genes, 
such as actin or ribosomal genes, which comprised approximately 17% of the total dataset. Due to the 
gene and sequence diversity of some ESTs, such sequences can find utility as molecular markers in 
current and future studies of this species and other soft coral biogeography, chemical ecology, 
phylogenetics, and evolution. 
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INTRODUCTION 

Knowing the complete nucleotide genome sequence of any given organism does not guarantee 
complete elucidation of its molecular biology. For a more accurate profile of ongoing cellular processes, 
attention must turn to the mRNA transcripts and resulting proteins and enzymes (the phenotype) 
encoded by the nuclear genome. For this reason, the fields of genomics, transcriptomics, and 
proteomics all help advance our understanding of basic cellular metabolism (DeLong et al. 2006; 
Koonin and Wolf, 2006), and this paper focuses on the second tier of mRNA analyses. 

Genomics and other “omics” analyses of marine organisms have only recently begun. Many marine 
invertebrates spark interest for their ecology and residence in unique and threatened habitats (coral 
reefs), or because they produce bioactive and potentially therapeutic natural products (Newman and 
Cragg, 2004). For example, the bryozoan Bugula neretina, in conjunction with a microbial 
endosymbiont, produces the macrocyclic lactone Bryostatin-1, which has been shown to have 
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immunomodulatory and anti-tumor capabilities through its modulation of protein kinase C activity 
(Lopanik et al. 2006). 

Natural product biosynthesis in scleractinian corals appears relatively less pronounced, perhaps 
because these organisms already have other protective mechanisms, such as nematocysts, a hard 
skeleton, and mucus production. However, octocorals (soft corals) can yield a diverse array of 
terpenoids, such as the anti-inflammatory and analgesic agents, the pseudopterosins, derived from the 
octocoral Pseudopterogorgia elisabethae (Look et al. 1986). Another octocoral, the common encrusting 
gorgonian, Erythropodium caribaeorum (EC) fastens to rocky substrate on Floridian and Caribbean 
coral reefs. This coral is known for the production of eleutherobin, a potent terpenoid chemo-
therapeutic agent with high activity against breast, renal, and lung cancer, and a mechanism of action 
similar to Taxol™. In addition to the anti-cancer activities, diterpene biosynthetic intermediates of EC 
have been shown to also have antimitotic properties (Britton et al. 2001). The production of these 
secondary metabolites within the octocoral has indicated defensive properties that deter predation by 
reef fish (Fenical and Pawlik, 1991). This study stemmed from a primary goal to characterize key 
biosynthetic enzymes (e.g. diterpene synthases), central to the production of eleutherobin by EC or its 
symbionts. 

The approach to find potential biosynthetic pathway genes related to eleutherobin or other secondary 
metabolism was based on enrichment. Genomic studies suggest that highly expressed housekeeping 
or “core” genes probably evolve more slowly, while rare (but active) transcripts exhibit more divergent 
sequences (Green et al. 1993). This is reasonable, if it is assumed that the cell has to “test” novel 
sequences before committing a large amount of metabolic energy into its coding and translation of a 
potentially useless protein (Krylov et al. 2003). Thus, this study aims to bypass most housekeeping 
transcripts by enriching for novel sequences via the utilization of suppression subtractive hybridization 
polymerase chain reaction (PCR) (Diatchenko et al. 1999). This method has been previously applied to 
find symbiosis-specific genes (Rodriguez-Lanetty et al. 2006). Other studies have applied 
transcriptomic analyses to soft corals, but only the more recent high throughput studies have yielded 
expressed sequence tags (EST) sequence data (Overbeek et al. 2005; Hoover et al. 2007; Hoover et 
al. 2008; Schwarz et al. 2008). The present study also represents an exercise to apply mRNA 
enrichment methods to a non-model marine coral (rather than Montastraea or Acropora). Gorgonia 
ventalina was used as the suppression subtractive hybridization (SSH) reference strain (driver) since it 
has different and fewer secondary metabolites than the target Erythropodium caribaeorum. Similar to 
M. Matz's and other initiatives to allow more open access to DNA sequences 
(http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html) it is expected that the release of 
these data can spur further experiments and hypothesis testing in coral species. 

MATERIALS AND METHODS  

Sample and RNA extraction 

EC was collected by SCUBA at Dania Beach, Fort Lauderdale, Florida, USA at a depth of 10 m. 
Gorgonia ventalina (GV) samples were obtained from live cultured specimens at Harbor Branch 
Oceanographic Institution. All samples were immediately frozen in liquid nitrogen and stored at -80ºC 
or placed in RNALater upon collection and stored at -20ºC. 

Total RNA from EC and from GV was extracted using the RNeasy Plant Mini kit (Qiagen, Valencia, CA, 
USA) or RNAwiz reagents (Ambion, Austin, TX, USA) according to manufacturers’ instructions. 
Microbial RNA was not separated from eukaryotic mRNA during this process. DNA digestion was 
performed with Amplification Grade DNAse I (Invitrogen, Carlsbad, CA, USA). RNA quantity was 
assessed by spectrophotometry (A260/A280), while RNA quality was assessed by gel electrophoresis. 

SSH PCR 

cDNA synthesis was performed with approximately 3 µg of total RNA. Enrichment via EC vs. GV for 
suppression subtractive hybridization PCR (EC x GV SSH PCR) to obtain novel non-housekeeping 
transcripts was accomplished with a combination of SuperSmart PCR cDNA Synthesis (oligo dT 
primers) and PCR-Select™ cDNA Subtraction Kits (Clontech, Mountain View, CA, USA). The pCRII 
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Topo TA plasmid vector (Invitrogen) was then used to clone enriched cDNAs after their PCR 
amplification with supplied adapters and primers. 

Sequencing 

Sequences were generated by Symbio Corporation (Menlo Park, CA) on ABI 3730xl DNA sequence 
analyzers. The resulting chromatograms (.scf extension) were base called via Phred (Ewing et al. 
1998) which generated quality scores for each nucleotide. Phred quality scores are on a logarithmic 
scale, with a score of 20 (Q20) indicating a 99% probability that the base was called correctly. 

Table 1. Representative E. caribaeorum EST and unigenes after BLASTX searches. 

EC clone GenBank Best 
Hit (Acc. No.) 

Top BLASTX Hit Description Gen-Bank 
No. (*) 

Score E Value 

353 C XP_002786203 RAS small GTpases 
RIC1/ypt1, putative 

[Perkinsus marinus ATCC 50983] 

FL512138 168 4.00E-47 

353 P XP_002433402 UDP-galactose transporter, putative [Ixodes 
scapularis] 

GH611838 114 1.00E-23 

355 M ABK29471 CHK1 checkpoint-like protein [Helicoverpa 
armigera] 

FL512144 88.6 2.00E-16 

356 BV ABA28990 DNA J-like protein 2  
[Symbiodinium sp. C3] 

FL512146 125 1.00E-27 

356 CP NP_001174722 Os06g0286310  
[Oryza sativa Japonica Group] 

FL512148 91.7 3.00E-17 

356 U XP_002112452 Expressed hypothetical protein [Trichoplax 
adhaerens] 

FL512151 136 9.00E-31 

382 AP XP_001624566 Core-binding factor subunit beta 
[Nematostella vectensis] and  

Big brother CG7959-PA  
[Drosophila melanogaster] 

FL512174 199 2E-49 

382 AY XP_001624566 Core-binding factor subunit beta 
[Nematostella vectensis] and 

Big brother CG7959-PA  
[Drosophila melanogaster] 

FL512176 193 1.00E-47 

382 DI XP_002742298 PREDICTED: ferritin-like protein-like 
[Saccoglossus kowalevskii] 

FL512182 149 9.00E-37 

382 DV XP_002742298 PREDICTED: ferritin-like protein-like 
[Saccoglossus kowalevskii] 

FL512192 172 5.00E-42 

382 FD ZP_06579711 Putative reverse transcriptase [Zingiber 
officinale] 

FL512203 94.7 2.00E-17 

386 C AAF91388 
XP_001676261 

SocE  
[Myxococcus xanthus] 

FL512217 99.4 2.00E-19 

418 BB XP_002644180 Hypothetical protein CBG17156 
[Caenorhabditis briggsae] 

FL512261 51.6 1.00E-04 

418 BC ZP_03289628 Hypothetical protein CLONEX_01831 
[Clostridium nexile DSM 1787] 

FL512262 142 1.00E-31 

386 B ZP_03104354 SocE [Bacillus cereus W] FL512216 80.9 5.00E-14 

386 AB NP_608540 CG2839 CG2839-PA  
[Drosophila melanogaster] 

FL512212 37.4 1.00E-04 

386 K XP_001633321 Predicted protein  
[Nematostella vectensis] 

FL512221 71.2 4.00E-11 

422  E-1 XP_001633321 Predicted protein  
[Nematostella vectensis] 

FL512303 68.2 2.00E-09 

419 CJ XP_002165056 PREDICTED: similar to acidic ribosomal 
protein A1  

[Hydra magnipapillata] 

FL512277 101 7.00E-20 

381 AY XP_002128607 PREDICTED: similar to actin  
[Ciona intestinalis] 

FL512160 182 1.00E-44 

 (*) Newly assigned GenBank EST Accession # for the corresponding EC clone shown in first column. 
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Bioinformatics data analyses 

The sequences were mapped, 6-frame translated, to the NR protein database, using the BLASTX 
option in NCBI BLAST (http://blast.ncbi.nlm.nih.gov/). Matches with E-value <10-2 were further 
analyzed using in-house scripts that select the most specific gene annotations from among all the high-
quality alignments to proteins in the database. This procedure is necessary in order to avoid a common 
annotation error caused by situations where the top BLAST hit has a non-specific label (e.g. 
hypothetical protein) yet other high-quality matches exist that have been assigned a specific functional 
label. 

Putative housekeeping genes were identified through keyword searches using a manually curated list 
of keywords associated with highly expressed microbial (Karlin and Mrazek, 2000) and eukaryotic 
genes (Eisenberg and Levanon, 2003). Furthermore, each gene was assigned to one of the three 
groups (Eukaryotes, Prokaryotes or Viruses) based on the taxonomic assignment of the nearest 
BLAST hit when such an assignment was available in the database. 

Sequence Submission. Novel ECEST sequences were deposited into GenBank (dbEST: FL512138-
FL512331, GH611838, and HO061755-HO062154). 

 

Fig. 1. Evolutionary relationships of ferritin of 18 taxa inferred from amino acid sequences using the 
Minimum Evolution (ME) method (Rzhetsky and Nei, 1992). The bootstrap consensus tree inferred from 100 
replicates is taken to represent the evolutionary history of the taxa analyzed. The percentage of replicate trees in 
which the associated taxa clustered together in the bootstrap test (100 replicates) is shown next to the branches 
(Felsenstein, 1985). The tree is drawn to scale, with branch lengths equal to the evolutionary distances used to 
infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method 
(Zuckerkandl and Pauling, 1965) and are in the units of the number of amino acid substitutions per site. The ME 
tree was searched using the Close-Neighbor-Interchange (CNI) algorithm (Nei and Kumar, 2000) at a search 
level of 3. All positions containing gaps and missing data were eliminated from the dataset (complete deletion 
option). There were a total of 107 positions in the final dataset. Phylogenetic analyses were conducted with 
MEGA4 (Tamura et al. 2007). Erythropodium accession numbers are listed in the text, while accession numbers 
for reference sequences are as follows: Nematostella vectensis - XP_001632011; Aplysia californica - 
ABF21074.1; Suberites ficusgi - CAG25529.1; Dermatophagoides pteronyssinus AAG02250; Argas 
monolakensis - ABI52633; Holothuria glaberrima - ABS29643; Ornithodoros parkeri - ABR23389; Meretrix 
meretrix - CAB72315; Dermacentor andersoni - AAG02250.1; Pisum sativum - CAA51786.1; Xenopus laevis - 
AAB20316.1; Branchiostomagi belcheri - AAQ21039.1; Malus xiaojinensis - AAK83702.1|AF315505_1; Homo 
sapiens - CCDS33070.1. 
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Suppression subtractive hybridization PCR isolation of cDNAs from a Caribbean soft coral 

5 

RESULTS AND DISCUSSION  

More than 591 EST sequences were generated in this study, with 238 ESTs [dbEST: FL512138 - 
FL512331, GH611838, and HO061755-HO062154] having significant matches against proteins in the 
NR database. Table 1 shows a sample representation of the top sequence identities obtained after 
BLASTX searches, showing relatively high hit scores and significant E values. As expected, a 
considerable fraction of EST hits (37 sequences) showed similarities to the sequenced anthozoan 
Nematostella vectensis genome (Sullivan et al. 2006). A large fraction of these sequences (25) had 
matches to unknown N. vectensis proteins (e.g. 358A, 382 EL) while the others matched a predicted 
core-binding factor (e.g. 382AF, 382AP). 

Among potential primary (core) metabolic genes, only 15 actin sequences were identified in this limited 
dataset with identity matches to diverse taxa. Only one ribosomal related sequence was identified. 
Comprehensive profiles of different gene categories are shown in Table 2. 

The majority of the sequences found (73.1%) appear to be of eukaryotic origin. This result was 
expected due to the use of oligo dT primers during first strand cDNA synthesis that typically tend to 
minimize the presence of prokaryotic and bacterial sequences, although the presence of these is still 
expected. Also, the EC dataset showed a high proportion of hypothetical sequences, consistent with 
similar analyses of larger EST datasets derived from 454 sequencing (Meyer et al. 2009). At least 60 
“unknown” or “hypothetical” sequence designations comprised a large proportion of database matches 
in this dataset (19% of the eukaryotic and 46% of prokaryotic sequences, respectively), while several 
other gene categories also appeared in relatively high proportions, such as 22 total ferritin sequences 
(9.3%), 16 Myxococcus and Bacillus SocE proteins (6.7%), and 7plant reversetranscriptase sequences 
(2.9%). 

Specific EC cDNAs, such as several transcription factors (with lower scoring thresholds), similar to 
those previously characterized in cnidarians (Seipel et al. 2004) also appear to have been detected. 
Within this category, ten clones such as 382AF and 382AP matched to a predicted core-binding factor 
in Nematostella vectensis, and a protein homologous to the Drosophila protein Big Brother, which has 
transcriptional regulatory functions (Kaminker et al. 2001). Another clone (386 R) showed similarity to a 
galaxin protein found in coral exoskeletons and used in coral systematics (Wirshing and Baker, 2008). 

A small portion (12% or 22 sequences) of the 172 of the eukaryotic ESTs also grouped into iron-sulfur 
assemblages that included ferritin-like proteins. As stated above, ferritin represents a ubiquitous iron 
storage protein (found in animals, plants, bacteria, and archaea) with key functions of iron 
detoxification and sequestration (Harrison and Arosio, 1996). Ferritin has also been implicated in redox 
stress responses (Rocha and Smith, 2004; Theil, 2007). 

Table 2. Erythropodium caribaeorum ESTs. 

Category ESTs Number % of Total 

Total 591 100 

Eukaryotes 174 29.44 

Prokaryotes 62 10.49 

Viruses 1 0.17 

Unknown 1 0.17 

No hit 353 59.73 

Euk hypothetical 32 18.39 

Euk housekeeping 30 17.24 

Euk other 112 64.37 

Prok hypothetical 28 45.16 

Prok housekeeping 0 0.00 

Prok other 34 54.84 
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Alignments and cursory phylogenetic analysis of diverse ferritin amino acid sequences were performed 
to place the present EC ferritin sequences within a taxonomic framework (Figure 1). The alignment 
revealed the presence of conserved tyrosine sequences and extends the finding of Schwarz et al. 
(2008) that indicated several conserved motifs, likely relevant to ferritin function, which could be used 
for future primer or probe design. The minimum evolution trees showed that EC sequences allied with 
each other formed a weak clade with other marine invertebrates, but not close with the cnidarian 
Nematostella. The ambiguity of positioning may be due to homoplasious residues in ferritin sequences, 
suggesting potential drawbacks as a deep phylogenetic marker despite the protein’s likely ancient 
origin. Although paralogous EC ferritin sequences are possible, the number of potential coral-derived 
ferritins derived from this subtraction may highlight the importance of this protein for the coral or its 
microbial community. 

As expected, bacterial and protozoan sequences were also detected in the library, albeit in fewer 
numbers (62 sequences - 26%), and could be associated with either transient or resident symbionts 
associated with the corals (Lopez et al. 2010). For example, sequences included a SocE gene, 
involved in protein degradation and amino acid scavenging in Myxococcus, a Streptomyces two-
component system sensor kinase, and diverse Clostridium, Arthrobacter sp. and Plasmodium chabaudi 
hypothetical sequences. 

Although the inclusion of specific metabolic genes or organismal source of these products has not yet 
been validated by quantitative PCR (qPCR), the current expression SSH analyses places the EC-
derived sequences in an interesting context. For example, these genes may be active in distantly 
related species, or may represent expression of rare genes. It would also be interesting to test for the 
expression of novel transcription factor sequences, which may be correlated with secondary metabolite 
biosyntheses. 

It was unfortunate that the originally targeted eleutherobin or related diterpene synthase genes were 
undetected in this study. However to date, relatively few diterpene genes have been characterized or 
isolated, with none from marine organisms. Moreover, very few biosynthetic pathway genes appeared 
to be detected with the exception of a putative RTX toxin (ZP_01442131). Nonetheless, this does not 
preclude the possibility that biosynthetic gene sequences occur among the 353 EC EST sequences 
that show no hits with current databases. For example, proteins similar to those in the moenomycin-
producer Streptomyces ghanaensis genome appear to be present in the Erythropodium dataset. 

One could also begin to monitor gene expression variation across different coral taxa that would help 
characterize an unknown sequence’s importance and function. For example EC can reside in much 
different reef substrates than GV and thus may produce more bioactive natural products as a 
consequence. Other explanations for a particular cDNA profile may stem from the presence of specific 
microbial associates or environmental cues. Overall, this study shows the utility and benefits of 
enriching and subtracting cDNAs to remove abundant core genes, identify novel genes, metabolic 
pathways, or variation in gene expression related to particular ecologies (Matus et al. 2008). The 591 
soft coral ESTs (with 353 without hits) newly isolated for this study represent a valuable library since 
the majority of the published genetic sequence data belongs to hard corals but not much work has 
been devoted to soft corals. 

ACKNOWLEDGMENTS  

The authors would like to thank the anonymous reviewer for their valuable comments and insights that 
helped to greatly improve this manuscript.  

Financial support: The authors gratefully acknowledge financial support from Florida Sea Grant College (R/LR-
MB-23 to JVL and R/LR-MB-14 to RK). This material is also based upon worked supported by the National Science 
Foundation under a grant awarded to L.Z. Santiago-Vázquez (awards #0310283 and 0514500). MP and DDS were 
supported in part the NIH grant R01-HG-0004885 to MP. 

 



Suppression subtractive hybridization PCR isolation of cDNAs from a Caribbean soft coral 

7 

REFERENCES 

BRITTON, R.; ROBERGE, M.; BERISCH, H. and ANDERSEN, R.J. (2001). Antimitotic diterpenoids from 
Erythropodium caribaeorum: Isolation artifacts and putative biosynthetic intermediates. Tetrahedron Letters, 
vol. 42, no. 16, p. 2953-2956. [CrossRef] 

DELONG, E.F.; PRESTON, C.M.; MINCER, T.; RICH, V.; HALLAM, S.J.; FRIGAARD, N.U.; MARTINEZ, A.; 
SULLIVAN, M.B.; EDWARDS, R.R.; RODRIGUEZ BRITO, B.; CHISHOLM, S.W. and KARL, D.M. (2006). 
Community genomics among stratified microbial assemblages in the ocean's interior. Science, vol. 311, no. 
5760, p. 496-503. [CrossRef] 

DIATCHENKO, L.; LUKYANOV, S.; LAU, Y.F.C. and SIEBERT, P.D. (1999). Suppression subtractive hybridization: 
A versatile method for identifying differentially expressed genes. Methods in Enzymology, vol. 303, p. 349-
380. [CrossRef] 

EISENBERG, E. and LEVANON, E.Y. (2003). Human housekeeping genes are compact. Trends in Genetics, vol. 
19, no. 7, p. 362-365. [CrossRef] 

EWING, B.; HILLIER, L.; WENDL, M. and GREEN, P. (1998). Base-calling of automated sequencer traces using 
Phred. I: Accuracy assessment.Genome Research, vol. 8, no. 3, p. 175-185. 

FELSENSTEIN, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, vol. 39, 
no. 4 p. 783-791. 

FENICAL, W. and PAWLIK, J.R. (1991). Defensive properties of secondary metabolites from the Caribbean 
gorgonian coral Erythropodium caribaeorum. Marine Ecology Progress Series, vol. 75, p. 1-8. [CrossRef] 

GREEN, P.; LIPMAN, D.; HILLIER, L.; WATERSTON, R.; STATES, D. and CLAVERIE, J.M. (1993). Ancient 
conserved regions in new gene sequences and the protein databases. Science, vol. 259, no. 5102, p. 1711-
1716. [CrossRef] 

HARRISON, P.M. and AROSIO, P. (1996). The ferritins: Molecular properties, iron storage function and cellular 
regulation. Biochimica et Biophysica Acta (BBA) - Bioenergetics,vol. 1275, no. 1-2, p. 161-203. [CrossRef] 

HOOVER, C.A.; SLATTERY, M. and MARSH, A.G. (2007). Profiling transcriptome complexity and secondary 
metabolite synthesis in a benthic soft coral, Sinularia polydactyla. Marine Biotechnology,vol. 9, no. 2, p. 166-
178. [CrossRef] 

HOOVER, C.A.; SLATTERY, M.; TARGETT, N.M. and MARSH, A.G. (2008). Transcriptome and metabolite 
responses to predation in a South Pacific soft coral. Biological Bulletin, vol. 214, no. 3, p. 319-328. 

KAMINKER, J.S.; SINGH, R.; LEBESTKY, T.; YAN, H. and BANERJEE, U. (2001). Redundant function of runt 
domain binding partners, Big brother and Brother, during Drosophila development. Development, vol. 128, 
no. 14, p. 2639-2648. 

KARLIN, S. and MRÁZEK, J. (2000). Predicted highly expressed genes of diverse prokaryotic genomes. The 
Journal of Bacteriology, vol. 182, no. 18, p. 5238-5250. [CrossRef] 

KOONIN, E.V. and WOLF, Y.I. (2006). Evolutionary systems biology: links between gene evolution and function. 
Current Opinion in Biotechnology, vol. 17, no. 5, p. 481-487. [CrossRef] 

KRYLOV, D.M.; WOLF, Y.I.; ROGOZIN, I.B. and KOONIN, E.V. (2003). Gene loss, protein sequence divergence, 
gene dispensability, expression level, and interactivity are correlated in eukaryoticevolution. Genome 
Research, vol. 13, no. 10, p. 2229-2235. [CrossRef] 

LOOK, S.A.; FENICAL, W.; JACOBS, R.S. and CLARDY, J. (1986). The pseudopterosins: anti-inflammatory and 
analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proceedings of the National 
Academy of Sciences of the Unites States of America, vol. 83, no. 17, p. 6238-6240. [CrossRef] 

LOPANIK, N.B.; TARGETT, N.M. and LINDQUIST, N. (2006). Isolation of two polyketide synthase gene fragments 
from the uncultured microbial symbiont of the marine bryozoan Bugula neritina. Applied and Environmental 
Microbiology, vol. 72, no. 12, p. 7941-7944. [CrossRef] 

LOPEZ, J.V.; RANZER, L.K.; LEDGER, A.; SCHOCH, B., DUCKWORTH, A.; MCCARTHY, P.J. and KERR, R.G. 
(2010). Comparison of bacterial diversity within the coral reef sponge, Axinella corrugata, the encrusting coral 
Erythropodium caribaeorum. In: Proceedings of the International Coral Reef Symposium, (11th, July 7-11, 
2008, Ft. Lauderdale, Florida, USA). Mini-Symposium 26: Biodiversity and Diversification of Reef Organism. 
p. 1355-1359. 

MATUS, D.Q.; MAGIE, C.R.; PANG, K.; MARTINDALE, M.Q. and THOMSEN, G.H. (2008). The Hedgehog gene 
family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog 
pathway evolution. Developmental Biology, vol. 313, no. 2, p. 501-518. [CrossRef] 

MEYER, E.; AGLYAMOVA, G.V.; WANG, S.; BUCHANAN-CARTER, J.; ABREGO, D.; COLBOURNE, J.K.; WILLIS, 
B.L. and MATZ, M.V. (2009). Sequencing and de novo analysis of a coral larval transcriptome using 454 
GSFlx. BMC Genomics, vol. 10, no. 219. [CrossRef] 

NEI, M. and KUMAR, S. (2000). Molecular evolution and phylogenetics. New York, Oxford Uiversity Press. 3336 p. 
ISBN 0-19-513585-7.  

NEWMAN, D.J. and CRAGG, G.M. (2004). Marine natural products and related compounds in clinical and 
advanced preclinical trials. Journal of Natural Products, vol. 67, no. 8, p. 1216-1238. [CrossRef] 

OVERBEEK, R.; BEGLEY, T.; BUTLER, R.M.; CHOUDHURI, J.V.; CHUANG, H.Y.; COHOON, M.; DE CRÉCY-
LAGARD, V.; DIAZ, N.; DISZ, T.; EDWARDS, R.; FONSTEIN, M.; FRANK, E.D.; GERDES, S.; GLASS, E.M.; 
GOESMANN, A.; HANSON, A.; IWATA-REUYL, D.; JENSEN, R.; JAMSHIDI, N.; KRAUSE, L.; KUBAL, M.; 
LARSEN, N.; LINKE, B.; MCHARDY, A.C; MEYER, F.; NEUWEGER, H.; OLSEN, G.; OLSON, R.; 
OSTERMAN, A.; PORTNOY, V.; PUSCH, G.D.; RODIONOV, D.A.; RÜCKERT, C.; STEINER, J.; STEVENS, 
R.; THIELE, I.; VASSIEVA, O.; YE, Y.; ZAGNITKO, O. and VONSTEIN, V. (2005).The subsystems approach 
to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acid Research, vol. 33, 
no. 17, p. 5691-5702. [CrossRef] 

http://dx.doi.org/10.1016/S0040-4039(01)00347-1�
http://dx.doi.org/10.1126/science.1120250�
http://dx.doi.org/10.1016/S0076-6879(99)03022-0�
http://dx.doi.org/10.1016/S0168-9525(03)00140-9�
http://dx.doi.org/10.3354/meps075001�
http://dx.doi.org/10.1126/science.8456298�
http://dx.doi.org/10.1016/0005-2728(96)00022-9�
http://dx.doi.org/10.1007/s10126-006-6048-y�
http://dx.doi.org/10.1128/JB.182.18.5238-5250.2000�
http://dx.doi.org/10.1016/j.copbio.2006.08.003�
http://dx.doi.org/10.1101/gr.1589103�
http://dx.doi.org/10.1073/pnas.83.17.6238�
http://dx.doi.org/10.1128/AEM.01277-06�
http://dx.doi.org/10.1016/j.ydbio.2007.09.032�
http://dx.doi.org/10.1186/1471-2164-10-219�
http://dx.doi.org/10.1021/np040031y�
http://dx.doi.org/10.1093/nar/gki866�


Lopez et al. 

8 

ROCHA, E.R. and SMITH, C.J. (2004). Transcriptional regulation of the Bacteroides fragilis ferritin gene (ftnA) by 
redox stress. Microbiology, vol. 150, no. 7, p. 2125-2134. [CrossRef] 

RODRIGUEZ-LANETTY, M.; PHILLIPS, W.S. and WEIS, V.M. (2006). Transcriptome analysis of a cnidarian - 
dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genomics, vol. 7, no. 23. 
[CrossRef] 

RZHETSKY, A. and NEI, M. (1992). A simple method for estimating and testing minimum-evolution trees. Molecular 
Biology and Evolution, vol. 9, no. 5. p. 945-967. 

SCHWARZ, J.A.; BROKSTEIN, P.B.; VOOLSTRA, C.; TERRY, A.Y.; MILLER, D.J.; SZMANT, A.M.; COFFROTH, 
M.A.; MEDINA, M. (2008). Coral life history and symbiosis: Functional genomic resources for two reef 
building Caribbean corals, Acropora palmata and Montastraea faveolata.BMC Genomics,vol. 9, no. 97. 
[CrossRef] 

SEIPEL, K.; YANZE, N.; MÜLLER, P.; STREITWOLF, R. and SCHMID, V. (2004). Basic leucine zipper transcription 
factors C/EBP and MafL in the hydrozoan jellyfish Podocoryne carnea. Developmental Dynamics, vol. 230, 
no. 3, p. 392-402. [CrossRef] 

SULLIVAN, J.C.; RYAN, J.F.; WATSON, J.A.; WEBB, J.; MULLIKIN, J.C.; ROKHSAR,D. and FINNERTY, J.R. 
(2006). StellaBase: The Nematostella vectensis Genomics Database. Nucleic Acids Research, vol. 34 
(Suppl.), no. 1, p. D495-D499. [CrossRef] 

TAMURA, K.; DUDLEY, J.; NEI, M. and KUMAR, S. (2007). MEGA4: Molecular Evolutionary Genetic Analysis 
(MEGA) software version 4.0. Molecular Biology and Evolution, vol. 24, no. 8, p. 1596-1599. [CrossRef] 

THEIL, E.C. (2007). Coordinating responses to iron and oxygen stress with DNA and mRNA promoters: The ferritin 
story. Biometals, vol. 20, no. 3-4, p. 513-521. [CrossRef] 

WIRSHING, H.H. and BAKER, A.C. (2008). Coral systematics inferred from the gene galaxin: Exploring 
phylogenetic relationships using a putative determinant of skeletal morphology. Proceedings of the 11th 
International Coral Reef Symposium, Ft. Lauderdale, Florida, 7-11 July 2008. Session number 26. p. 1401-
1405. 

ZUCKERKANDL, E. and PAULING, L. (1965). Part III. Evolutionary divergence and convergence in proteins. In: 
BRYSON, V. and VOGEL, H.J. eds. Evolving Genes and Proteins. New York, Academic Press. p. 97-166. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to cite this article: 

LOPEZ, J.V.; LEDGER, A.; SANTIAGO-VÁZQUEZ, L.Z.; POP, M.; SOMMER, D.D.; RANZER, L.K.; 
FELDMAN, R.A. and KERR, R.G. (2011). Suppression subtractive hybridization PCR isolation of cDNAs from a 
Caribbean soft coral. Electronic Journal of Biotechnology, vol. 13, no. 5. http://dx.doi.org/10.2225/vol14-issue1-
fulltext-3 

 
Note: Electronic Journal of Biotechnology is not responsible if on-line references cited on manuscripts are not available any more after the date of 
publication. Supported by UNESCO / MIRCEN network.  

http://dx.doi.org/10.1099/mic.0.26948-0�
http://dx.doi.org/10.1186/1471-2164-7-23�
http://dx.doi.org/10.1186/1471-2164-9-97�
http://dx.doi.org/10.1002/dvdy.20061�
http://dx.doi.org/10.1093/nar/gkj020�
http://dx.doi.org/10.1093/molbev/msm092�
http://dx.doi.org/10.1007/s10534-006-9063-6�
http://dx.doi.org/10.2225/vol14-issue1-fulltext-3�
http://dx.doi.org/10.2225/vol14-issue1-fulltext-3�


Electronic Journal of Biotechnology ISSN: 0717-3458

http://www.ejbiotechnology.info

DOI: 10.2225/vol14-issue1-fulltext-3                                                                                                          SHORT COMMUNICATION

Lopez et al.

Suppression subtractive hybridization PCR isolation of cDNAs from a Caribbean soft coral

[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Suppression subtractive hybridization PCR isolation of cDNAs from a Caribbean soft coral

Jose V. Lopez1,2,3 [image: ]  · Angela Ledger2 · Lory Z. Santiago-Vázquez3,4 · Mihai Pop5 · Dan D. Sommer5
Llanie K. Ranzer3,6 · Robert A. Feldman7 · Russell G. Kerr3,8

1 Oceanographic Center, Nova Southeastern University, Dania Beach, FL, USA
2 Florida Atlantic University at Harbor Branch Oceanographic Institution Fort Pierce, FL, USA
3 Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, USA
4 Natural Sciences Division, University of Houston, Clear Lake, Houston, TX, USA
5 Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
6 Biotechnology Department, Keiser University, Port St. Lucie, FL, USA 
7 SymBio Corporation, Menlo Park, CA, USA
8 Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI, Canada

[image: ] Corresponding author: joslo@nova.edu

Received March 27, 2010 / Accepted November 16, 2010

Published online: January 15, 2011

© 2011 by Pontificia Universidad Católica de Valparaíso, Chile

[bookmark: abstract]Abstract Transcriptomic studies of marine organisms are still in their infancy. A partial, subtracted expressed sequence tag (EST) library of the Caribbean octocoral Erythropodium caribaeorum and the sea fan Gorgonia ventalina has been analyzed in order to find novel genes or differences in gene expression related to potential secondary metabolite production or symbioses. This approach entails enrichment for potential non-“housekeeping” genes using the suppression subtractive hybridization (SSH) polymerase chain reaction (PCR) method. More than 500 expressed sequence tags (ESTs) were generated after cloning SSH products, which yielded at least 53 orthologous groups of proteins (COGs) and Pfam clusters, including transcription factors (Drosophila Big Brother), catalases, reverse transcriptases, ferritins and various “hypothetical” protein sequences. A total of 591 EST sequences were deposited into GenBank [dbEST: FL512138 - FL512331, GH611838, and HO061755-HO062154]. The results represent proof of concept for enrichment of unique transcripts over housekeeping genes, such as actin or ribosomal genes, which comprised approximately 17% of the total dataset. Due to the gene and sequence diversity of some ESTs, such sequences can find utility as molecular markers in current and future studies of this species and other soft coral biogeography, chemical ecology, phylogenetics, and evolution.
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INTRODUCTION

Knowing the complete nucleotide genome sequence of any given organism does not guarantee complete elucidation of its molecular biology. For a more accurate profile of ongoing cellular processes, attention must turn to the mRNA transcripts and resulting proteins and enzymes (the phenotype) encoded by the nuclear genome. For this reason, the fields of genomics, transcriptomics, and proteomics all help advance our understanding of basic cellular metabolism (DeLong et al. 2006; Koonin and Wolf, 2006), and this paper focuses on the second tier of mRNA analyses.

Genomics and other “omics” analyses of marine organisms have only recently begun. Many marine invertebrates spark interest for their ecology and residence in unique and threatened habitats (coral reefs), or because they produce bioactive and potentially therapeutic natural products (Newman and Cragg, 2004). For example, the bryozoan Bugula neretina, in conjunction with a microbial endosymbiont, produces the macrocyclic lactone Bryostatin-1, which has been shown to have immunomodulatory and anti-tumor capabilities through its modulation of protein kinase C activity (Lopanik et al. 2006).

Natural product biosynthesis in scleractinian corals appears relatively less pronounced, perhaps because these organisms already have other protective mechanisms, such as nematocysts, a hard skeleton, and mucus production. However, octocorals (soft corals) can yield a diverse array of terpenoids, such as the anti-inflammatory and analgesic agents, the pseudopterosins, derived from the octocoral Pseudopterogorgia elisabethae (Look et al. 1986). Another octocoral, the common encrusting gorgonian, Erythropodium caribaeorum (EC) fastens to rocky substrate on Floridian and Caribbean coral reefs. This coral is known for the production of eleutherobin, a potent terpenoid chemo-therapeutic agent with high activity against breast, renal, and lung cancer, and a mechanism of action similar to Taxol™. In addition to the anti-cancer activities, diterpene biosynthetic intermediates of EC have been shown to also have antimitotic properties (Britton et al. 2001). The production of these secondary metabolites within the octocoral has indicated defensive properties that deter predation by reef fish (Fenical and Pawlik, 1991). This study stemmed from a primary goal to characterize key biosynthetic enzymes (e.g. diterpene synthases), central to the production of eleutherobin by EC or its symbionts.

The approach to find potential biosynthetic pathway genes related to eleutherobin or other secondary metabolism was based on enrichment. Genomic studies suggest that highly expressed housekeeping or “core” genes probably evolve more slowly, while rare (but active) transcripts exhibit more divergent sequences (Green et al. 1993). This is reasonable, if it is assumed that the cell has to “test” novel sequences before committing a large amount of metabolic energy into its coding and translation of a potentially useless protein (Krylov et al. 2003). Thus, this study aims to bypass most housekeeping transcripts by enriching for novel sequences via the utilization of suppression subtractive hybridization polymerase chain reaction (PCR) (Diatchenko et al. 1999). This method has been previously applied to find symbiosis-specific genes (Rodriguez-Lanetty et al. 2006). Other studies have applied transcriptomic analyses to soft corals, but only the more recent high throughput studies have yielded expressed sequence tags (EST) sequence data (Overbeek et al. 2005; Hoover et al. 2007; Hoover et al. 2008; Schwarz et al. 2008). The present study also represents an exercise to apply mRNA enrichment methods to a non-model marine coral (rather than Montastraea or Acropora). Gorgonia ventalina was used as the suppression subtractive hybridization (SSH) reference strain (driver) since it has different and fewer secondary metabolites than the target Erythropodium caribaeorum. Similar to M. Matz's and other initiatives to allow more open access to DNA sequences (http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html) it is expected that the release of these data can spur further experiments and hypothesis testing in coral species.

[bookmark: M_M][bookmark: m_1]MATERIALS AND METHODS 

Sample and RNA extraction

EC was collected by SCUBA at Dania Beach, Fort Lauderdale, Florida, USA at a depth of 10 m. Gorgonia ventalina (GV) samples were obtained from live cultured specimens at Harbor Branch Oceanographic Institution. All samples were immediately frozen in liquid nitrogen and stored at -80ºC or placed in RNALater upon collection and stored at -20ºC.

Total RNA from EC and from GV was extracted using the RNeasy Plant Mini kit (Qiagen, Valencia, CA, USA) or RNAwiz reagents (Ambion, Austin, TX, USA) according to manufacturers’ instructions. Microbial RNA was not separated from eukaryotic mRNA during this process. DNA digestion was performed with Amplification Grade DNAse I (Invitrogen, Carlsbad, CA, USA). RNA quantity was assessed by spectrophotometry (A260/A280), while RNA quality was assessed by gel electrophoresis.

SSH PCR

cDNA synthesis was performed with approximately 3 µg of total RNA. Enrichment via EC vs. GV for suppression subtractive hybridization PCR (EC x GV SSH PCR) to obtain novel non-housekeeping transcripts was accomplished with a combination of SuperSmart PCR cDNA Synthesis (oligo dT primers) and PCR-Select™ cDNA Subtraction Kits (Clontech, Mountain View, CA, USA). The pCRII Topo TA plasmid vector (Invitrogen) was then used to clone enriched cDNAs after their PCR amplification with supplied adapters and primers.

Sequencing

 (
Table 1. Representative 
E.
 
caribaeorum
 EST and unigenes after BLASTX searches.
EC clone
GenBank Best Hit (Acc. No.)
Top BLASTX Hit Description
Gen-Bank No. (*)
Score
E Value
353 C
XP_002786203
RAS small GTpases
RIC1/ypt1, putative
[
Perkinsus marinus
 ATCC 50983]
FL512138
168
4.00E-47
353 P
XP_002433402
UDP-galactose transporter, putative [
Ixodes scapularis
]
GH611838
114
1.00E-23
355 M
ABK29471
CHK1 checkpoint-like protein [
Helicoverpa armigera
]
FL512144
88.6
2.00E-16
356 BV
ABA28990
DNA J-like protein 2 
[
Symbiodinium
 sp. C3]
FL512146
125
1.00E-27
356 CP
NP_001174722
Os06g0286310 
[
Oryza sativa Japonica Group
]
FL512148
91.7
3.00E-17
356 U
XP_002112452
Expressed hypothetical protein [
Trichoplax adhaerens
]
FL512151
136
9.00E-31
382 AP
XP_001624566
Core-binding factor subunit beta [
Nematostella vectensis
] and 
Big brother CG7959-PA 
[
Drosophila melanogaster
]
FL512174
199
2E-49
382 AY
XP_001624566
Core-binding factor subunit beta [
Nematostella vectensis
] and
Big brother CG7959-PA 
[
Drosophila melanogaster
]
FL512176
193
1.00E-47
382 DI
XP_002742298
PREDICTED: ferritin-like protein-like [
Saccoglossus kowalevskii]
FL512182
149
9.00E-37
382 DV
XP_002742298
PREDICTED: ferritin-like protein-like [
Saccoglossus kowalevskii
]
FL512192
172
5.00E-42
382 FD
ZP_06579711
Putative reverse transcriptase [
Zingiber officinale
]
FL512203
94.7
2.00E-17
386 C
AAF91388 XP_001676261
SocE 
[
Myxococcus xanthus
]
FL512217
99.4
2.00E-19
418 BB
XP_002644180
Hypothetical protein CBG17156 [
Caenorhabditis briggsae
]
FL512261
51.6
1.00E-04
418 BC
ZP_03289628
Hypothetical protein CLONEX_01831 [
Clostridium nexile DSM 1787
]
FL512262
142
1.00E-31
386 B
ZP_03104354
SocE [
Bacillus cereus W
]
FL512216
80.9
5.00E-14
386 AB
NP_608540
CG2839 CG2839-PA 
[
Drosophila melanogaster
]
FL512212
37.4
1.00E-04
386 K
XP_001633321
Predicted protein 
[
Nematostella vectensis
]
FL512221
71.2
4.00E-11
422  E-1
XP_001633321
Predicted protein 
[
Nematostella vectensis
]
FL512303
68.2
2.00E-09
419 CJ
XP_002165056
PREDICTED: similar to acidic ribosomal protein A1 
[
Hydra magnipapillata
]
FL512277
101
7.00E-20
381 AY
XP_002128607
PREDICTED: similar to actin 
[
Ciona intestinalis
]
FL512160
182
1.00E-44
 
(*) Newly assigned GenBank EST Accession # for the corresponding EC clone shown in first column.
)Sequences were generated by Symbio Corporation (Menlo Park, CA) on ABI 3730xl DNA sequence analyzers. The resulting chromatograms (.scf extension) were base called via Phred (Ewing et al. 1998) which generated quality scores for each nucleotide. Phred quality scores are on a logarithmic scale, with a score of 20 (Q20) indicating a 99% probability that the base was called correctly.

Bioinformatics data analyses

The sequences were mapped, 6-frame translated, to the NR protein database, using the BLASTX option in NCBI BLAST (http://blast.ncbi.nlm.nih.gov/). Matches with E-value <10-2 were further analyzed using in-house scripts that select the most specific gene annotations from among all the high-quality alignments to proteins in the database. This procedure is necessary in order to avoid a common annotation error caused by situations where the top BLAST hit has a non-specific label (e.g. hypothetical protein) yet other high-quality matches exist that have been assigned a specific functional label.

Putative housekeeping genes were identified through keyword searches using a manually curated list of keywords associated with highly expressed microbial (Karlin and Mrazek, 2000) and eukaryotic genes (Eisenberg and Levanon, 2003). Furthermore, each gene was assigned to one of the three groups (Eukaryotes, Prokaryotes or Viruses) based on the taxonomic assignment of the nearest BLAST hit when such an assignment was available in the database.

 (
Fig. 1. Evolutionary relationships of ferritin of 18 taxa inferred from amino acid sequences using the Minimum Evolution (ME) method (Rzhetsky and Nei, 1992). 
The bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary history of the taxa analyzed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (100 replicates) is shown next to the branches (Felsenstein, 1985). The tree is drawn to scale, with branch lengths equal to the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method (Zuckerkandl and Pauling, 1965) and are in the units of the number of amino acid substitutions per site. The ME tree was searched using the Close-Neighbor-Interchange (CNI) algorithm (Nei and Kumar, 2000) at a search level of 3. All positions containing gaps and missing data were eliminated from the dataset (complete deletion option). There were a total of 107 positions in the final dataset. Phylogenetic analyses were conducted with MEGA4 (Tamura et al. 2007). 
Erythropodium 
accession numbers are listed in the text, while accession numbers for reference sequences are as follows: 
Nematostella vectensis
 - XP_001632011; 
Aplysia californica
 - ABF21074.1; 
Suberites ficusgi
 - CAG25529.1; 
Dermatophagoides pteronyssinus
 AAG02250; 
Argas monolakensis
 - ABI52633; 
Holothuria glaberrima
 - ABS29643; 
Ornithodoros parkeri
 - ABR23389; 
Meretrix meretrix
 - CAB72315; 
Dermacentor andersoni -
 AAG02250.1; 
Pisum sativum
 - CAA51786.1; 
Xenopus laevis
 - AAB20316.1; 
Branchiostomagi belcheri
 - AAQ21039.1; 
Malus xiaojinensis
 - AAK83702.1|AF315505_1; 
Homo sapiens
 - CCDS33070.1.
)[image: http://www.ejbiotechnology.cl/content/vol14/issue1/full/3/f1.jpg]Sequence Submission. Novel ECEST sequences were deposited into GenBank (dbEST: FL512138-FL512331, GH611838, and HO061755-HO062154).

[bookmark: results]RESULTS AND DISCUSSION 

More than 591 EST sequences were generated in this study, with 238 ESTs [dbEST: FL512138 - FL512331, GH611838, and HO061755-HO062154] having significant matches against proteins in the NR database. Table 1 shows a sample representation of the top sequence identities obtained after BLASTX searches, showing relatively high hit scores and significant E values. As expected, a considerable fraction of EST hits (37 sequences) showed similarities to the sequenced anthozoan Nematostella vectensis genome (Sullivan et al. 2006). A large fraction of these sequences (25) had matches to unknown N. vectensis proteins (e.g. 358A, 382 EL) while the others matched a predicted core-binding factor (e.g. 382AF, 382AP).

Among potential primary (core) metabolic genes, only 15 actin sequences were identified in this limited dataset with identity matches to diverse taxa. Only one ribosomal related sequence was identified. Comprehensive profiles of different gene categories are shown in Table 2.

The majority of the sequences found (73.1%) appear to be of eukaryotic origin. This result was expected due to the use of oligo dT primers during first strand cDNA synthesis that typically tend to minimize the presence of prokaryotic and bacterial sequences, although the presence of these is still expected. Also, the EC dataset showed a high proportion of hypothetical sequences, consistent with similar analyses of larger EST datasets derived from 454 sequencing (Meyer et al. 2009). At least 60 “unknown” or “hypothetical” sequence designations comprised a large proportion of database matches in this dataset (19% of the eukaryotic and 46% of prokaryotic sequences, respectively), while several other gene categories also appeared in relatively high proportions, such as 22 total ferritin sequences (9.3%), 16 Myxococcus and Bacillus SocE proteins (6.7%), and 7plant reversetranscriptase sequences (2.9%).

Specific EC cDNAs, such as several transcription factors (with lower scoring thresholds), similar to those previously characterized in cnidarians (Seipel et al. 2004) also appear to have been detected. Within this category, ten clones such as 382AF and 382AP matched to a predicted core-binding factor in Nematostella vectensis, and a protein homologous to the Drosophila protein Big Brother, which has transcriptional regulatory functions (Kaminker et al. 2001). Another clone (386 R) showed similarity to a galaxin protein found in coral exoskeletons and used in coral systematics (Wirshing and Baker, 2008).

 (
Table 2
.
 
Erythropodium
 
caribaeorum
 ESTs.
Category
ESTs
 
Number
% of Total
Total
591
100
Eukaryotes
174
29.44
Prokaryotes
62
10.49
Viruses
1
0.17
Unknown
1
0.17
No hit
353
59.73
Euk hypothetical
32
18.39
Euk housekeeping
30
17.24
Euk other
112
64.37
Prok hypothetical
28
45.16
Prok housekeeping
0
0.00
Prok other
34
54.84
)A small portion (12% or 22 sequences) of the 172 of the eukaryotic ESTs also grouped into iron-sulfur assemblages that included ferritin-like proteins. As stated above, ferritin represents a ubiquitous iron storage protein (found in animals, plants, bacteria, and archaea) with key functions of iron detoxification and sequestration (Harrison and Arosio, 1996). Ferritin has also been implicated in redox stress responses (Rocha and Smith, 2004; Theil, 2007).

Alignments and cursory phylogenetic analysis of diverse ferritin amino acid sequences were performed to place the present EC ferritin sequences within a taxonomic framework (Figure 1). The alignment revealed the presence of conserved tyrosine sequences and extends the finding of Schwarz et al. (2008) that indicated several conserved motifs, likely relevant to ferritin function, which could be used for future primer or probe design. The minimum evolution trees showed that EC sequences allied with each other formed a weak clade with other marine invertebrates, but not close with the cnidarian Nematostella. The ambiguity of positioning may be due to homoplasious residues in ferritin sequences, suggesting potential drawbacks as a deep phylogenetic marker despite the protein’s likely ancient origin. Although paralogous EC ferritin sequences are possible, the number of potential coral-derived ferritins derived from this subtraction may highlight the importance of this protein for the coral or its microbial community.

As expected, bacterial and protozoan sequences were also detected in the library, albeit in fewer numbers (62 sequences - 26%), and could be associated with either transient or resident symbionts associated with the corals (Lopez et al. 2010). For example, sequences included a SocE gene, involved in protein degradation and amino acid scavenging in Myxococcus, a Streptomyces two-component system sensor kinase, and diverse Clostridium, Arthrobacter sp. and Plasmodium chabaudi hypothetical sequences.

Although the inclusion of specific metabolic genes or organismal source of these products has not yet been validated by quantitative PCR (qPCR), the current expression SSH analyses places the EC-derived sequences in an interesting context. For example, these genes may be active in distantly related species, or may represent expression of rare genes. It would also be interesting to test for the expression of novel transcription factor sequences, which may be correlated with secondary metabolite biosyntheses.

It was unfortunate that the originally targeted eleutherobin or related diterpene synthase genes were undetected in this study. However to date, relatively few diterpene genes have been characterized or isolated, with none from marine organisms. Moreover, very few biosynthetic pathway genes appeared to be detected with the exception of a putative RTX toxin (ZP_01442131). Nonetheless, this does not preclude the possibility that biosynthetic gene sequences occur among the 353 EC EST sequences that show no hits with current databases. For example, proteins similar to those in the moenomycin-producer Streptomyces ghanaensis genome appear to be present in the Erythropodium dataset.

One could also begin to monitor gene expression variation across different coral taxa that would help characterize an unknown sequence’s importance and function. For example EC can reside in much different reef substrates than GV and thus may produce more bioactive natural products as a consequence. Other explanations for a particular cDNA profile may stem from the presence of specific microbial associates or environmental cues. Overall, this study shows the utility and benefits of enriching and subtracting cDNAs to remove abundant core genes, identify novel genes, metabolic pathways, or variation in gene expression related to particular ecologies (Matus et al. 2008). The 591 soft coral ESTs (with 353 without hits) newly isolated for this study represent a valuable library since the majority of the published genetic sequence data belongs to hard corals but not much work has been devoted to soft corals.
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