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Abstract  

Background: Discovering biomarkers is a fundamental step to understand and deal with genetic 

diseases. Methods using classic Computer Science algorithms have been adapted in order to support 
processing large biological data sets, aiming to find useful information to understand causing 
conditions of diseases such as cancer.  
Results: This paper describes some promising biomarker discovery methods based on several grid 

architectures. Each technique has some features that make it more suitable for a particular grid 
architecture. This matching depends on the parallelizing capabilities of the method and the resource 
availability in each processing/storage node.  
Conclusion: The study described in this paper analyzed the performance of biomarker discovery 

methods in different grid architectures. We have found some methods are more suited for certain grid 
architectures, resulting in significant performance improvement and producing more accurate results. 
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INTRODUCTION 

It is clear that the cure or, at least, early detection of diseases such as cancer, Alzheimer and 
Parkinson depends on human understanding of the genetic causing factors and conditions. Therefore, 
handling genetic code may result in the production of process-blocking substances (Chen et al. 2003).  

Genetic research often involves the extraction and processing of huge amounts of genetics and 
proteomics data (Kim et al. 2008) searching for chemical patterns that represent biological signatures 
or biological states, also known as biomarkers.  

This paper presents an analysis on the most common biomarker discovery methods currently adopted 
on grid environments. Section Materials and Databases presents the methods and their execution 
environment. Grid Types describes the main grid environment architectures and types. Performance 
Analysis analyzes the adequacy of the existing grid environments for executing biomarker discovery 
methods and section Concluding Remarks concludes this work. 
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MATERIALS AND METHODS  

This section presents three workflow steps of biological analysis information process. First, the 
samples are collected from organisms or source materials and “digitalized” in a process called 
sequencing. This process generates data in a format that a computer understands. The second step 
consists in storing these data in one or more biological databases where researchers have access to 
do the third and final step: process data in different ways to extract valuable information.  

Extraction methods  

Recent advances on DNA extraction technologies, such as DNA-chips, allow researchers to map a 
genome segment in minutes. After mapping, discovery methods (most of them based on Artificial 
Intelligence) are commonly used to mine these data searching for biomarkers.  

A mass spectrometer is an equipment designed to identify the mass-to-charge of particles. This 
technique enables fast verification of a substance composition. The equipment returns a sequence of 
mass measures expressed in real numbers. From this numbers, conversion tools can detect the 
sample composition.  

DNA-chips or microarrays are commonly used to compare two or more DNA sequences and identify 
discrepancies (Lashkari et al. 1997).  

Finally, pirosequencing is a promising method that rebuilds DNA synthesis process and can sequence 
at higher rates with lower costs (Ronaghi et al. 1998).  

Biological databases  

A vast amount of DNA data is generated every day. These data must be stored and may be shared 
across different research centers. To accomplish this, databases such as Genbank (substances 
composition) (http://www.ncbi.nlm.nih.gov/genbank/), BioCyc (biological pathways) (http://biocyc.org/) 
and Pubmed (medical references) (http://www.ncbi.nlm.nih.gov/pubmed/) allow researchers to submit 
analyzed datasets.  

Most of the biomarker discovery methods query these databases looking for similar patterns and 
references in medical literature.  

These databases are cross-referenced and fed by several sequencers and research staff around the 
world.  

Experimental databases such as Stanford Microarray Database (http://smd.stanford.edu/) and Gene 
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) permit researchers without sequencing 
equipment to obtain samples to study. Stanford Microarray Database contains data from almost 80 
thousand experiments. Raw data is published, including previous analysis, if authorized by the patient. 
It has strong integration with Pubmed and NCI databases.  

Discovery methods  

Biomarker discovery methods perform pattern search algorithms against biological databases and 
compare results with data obtained from patients.  

A grid architecture can be customized to execute a discovery method, aiming to obtain better 
performance.  

The main method profiles are discussed in the following subsections.  
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Sequence alignment. The natural way when dealing with DNA data (a sequence of base pair 

expressed with the C. T. G. A. characters) is trying to match two or more samples and identify 
differences that indicate a biological condition.  

The same concept can be used with proteomic and RNA data. Matching sequence segments can be 
useful to forensic analysis and studying the evolution of species. Any relevant segment match found 
can indicate correlations between the state of source and target organisms. This can be used to prove 
ancestral relationship or identify which mutations happened across generations (useful when trying to 
identify gene functions).  

The main objective of an alignment method is to find the best fit of two or more sequence segments to 
maximize the matching area. The alignment can be global (trying to cover the whole segment) or local 
(trying to find specific regions of similarity). To achieve these goals, the algorithm can insert or remove 
gaps inside the sequences (Hong and Tewfik, 2009). The procedure of inserting/removing gaps is 
performed in the pre-processing phase.  

In this category of methods, BLAST (Basic Local Alignment Search Tool) (Korf et al. 2003) is the best 
known and effective. A parallel implementation of BLAST (http://www.mpiblast.org/) is available and 
some experiments demonstrate a sensible performance enhancement in grid environment (Trombetti 
et al. 2006).  

Several types of algorithms can be applied to produce the alignment, such as dynamic programming, 
string-based alignment, dot-matrix and scoring functions. The efficiency and accuracy of each method 
depends on the on the characteristics of the source and target sequences (Axelson-Fisk, 2010).  

Artificial Intelligence (AI) and non-deterministic methods. Deterministic methods are good when 
the exact result pattern is known a priori. Biomarkers in a genome, for example, can be spread across 
thousands of random gene positions. This type of method cannot deal efficiently with this scenario 
because it needs to verify all possible combinations to make any general assumptions (Syarifahadilah 
et al. 2012).  

In this case, an evolutionary algorithm or an auto-learning technique will demand less computer 
operations to produce results. IA methods try to simulate human intelligence and learning process 
(Haykin, 2001).  

Neural networks (NN) can learn to distinguish patterns depending on input and the frequency of the 
element occurrences (Azuaje, 2001). The big advantage of using NN is scalability adherence. When 
more processors are added, the network can be extended adding more decision nodes.  

A cluster of GPUs (graphic processing units) was employed by Johnson et al. (2012) reducing in more 
than 96% the computing time. This case demonstrates a good cost/efficiency ratio.  

Support vector machines (SVM) are commonly applied in problems involving mass spectrometry and 
microarray data (Pang et al. 2006). The objective of this method is to classify one input in a set of 
categories. Initially the machine is trained with a set of elements associated with categories. After that, 
the machine works by itself and improves its own knowledge on each hit. SVMs are present in the 
latest biomarkers discoveries in genomic and proteomic data.  

SVM can help in the decision of problems. For example: deciding if a mutation represents a disease 
biomarker or trying to diagnose which type of cancer one DNA  cell sample represents (Figure 1 shows 
a SVM model that addresses this problem. Each white-leaf node represents cancer type A, while filled-
leaf nodes represent cancer type B. Non leaf nodes represent decision points. Numbers inside leaf 
nodes indicate the number of patients diagnosed with this type of cancer). 
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Fig. 1 Example of SVM used on cancer type diagnostics (Pang et al. 2006). 

Genetic algorithms (GA) are a good choice to avoid traditional computing in some high complexity 
problems. The technique tries to simulate evolutionary biology operation, recombining characteristics 
across generations of species (Goldberg, 1989).  

Applications demanding recombination of behaviours or characteristics are suitable for using genetic 
algorithms, despite the lower parallelization capabilities of this method. Paul and Iba used GA to verify 
which genes are associated to different types of cancer, based on frequency of appearance (Paul and 
Iba, 2009). Moreover, the most recent researche with microarray data using GAs showed promising 
results (Scheubert et al. 2012).  

Boolean networks are structures that simulate the possible ways to satisfy a condition. Each network 
node represents one condition. Depending on wether the condition is satisfied or not, network flow 
takes one way or another.  

Applying this concept on genetics, Boolean networks simulate evolutionary conditions or reactions that 
cause a situation (causing factors of cancer, for example). It is possible to simulate which specific 
mutations cause deregulation on the cell division process.  

Boolean network traversal algorithms can be subdivided (enabling parallelization). Each process can 
take a set of ways in the network, since there are not too many cycles.  

Statistics. Correlation of a set of variables is a field of statistics that can be applied on pattern 

discovery problems. Some methods such as Monte Carlo and Single-Value Decomposition are 
commonly used in biomarker discovery (Lai et al. 2009).  

Before applying a statistical method, data must be normalized and converted to the expected base 
scale (generally a sequence of real numbers) by the method. For this reason, the data obtained from 
mass spectrometry is most commonly processed using statistical methods.  

The basic operation of this type of method is to process samples marking segment group with 
repetitions trying to associate their occurrence count with some relevant variable, using probability 
models (Re and Valentini, 2012).  
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Another strategy typically present in statistical methods is to assign a calculated factor to each sample 
and verify the pattern match simply by comparing these factors. Samples are considered more similar 
on how close these factors are to each other (Lazar et al. 2012).  

Limpiti et al. (2012) made a frequency analysis on proteomic mass spectrometry data combining 
several statistical feature selection approaches, obtaining an accurate cancer detection method. A 
similar approach was used in Cheng et al. (2011) analyzing HBV virus DNA sequences.  

Hybrid methods. Different methods can be applied to the same samples to improve pattern matching 
probability. This is the objective of using a hybrid multiagent approach.  

Qabaja et al. (2009) used three different statistical methods to enhance the accuracy of results of 
cancer-related biomarkers.  

Most researchers try to present a verification/validation approach to their research. Using hybrid 
methods, they can prove the same theory using two or more methods, adding reliability to results. 
Moreover, if a biomarker is found using two different methods, for example, researches can guide next 
works focusing on the locus where the first was found. 

GRYD TYPES 

A computing grid is a collection of computer resources working together to achieve a given goal 
(Colouris et al. 2005). Depending on the budget, resources and technology, several architectures can 
be modeled to form infinite possible topologies of grids.  

This section discusses the commonly used approaches for building computing grids.  

Enterprise grid  

In the early 2000's, organizations of different sizes have noticed the potential of grid computing. Then, 
consortiums of companies, institutions and countries were formed to join efforts and resources to 
create this type of infrastructure.  

CaGrid (http://www.cagrid.org/) is an example of initiative founded in North America for helping in 
cancer research. The same proposal was implemented in Europe with EGI (European Grid 
Infrastructure) (http://www.egi.eu/).  

Some grids of this type are open to any research groups aiming to develop and execute analysis, 
depending on the project relevance.  

EGI, for example, contains about 330 processing nodes across 57 countries in Europe. 270 thousand 
processor cores constitute the grid computing power and the total storage capacity is over 139 
petabytes. Anyone can submit applications using specific API (Application Program Interface). The EGI 
Committee chooses which applications will a have access to more resources.  

Enterprise grid nodes typically communicate through public national research networks (e.g., Internet 2 
in the United States and CLARA in Latin America). In some cases, dedicated links are allocated to 
connect some nodes, depending on project budget, needs and relevance.  

Collaborative computing  

Problems demanding massive computer power, such as prime numbers decomposition or proteome 
folding, take years to execute in a single enterprise or private grid.  
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Initiatives such as BOINC (Berkeley Open Infrastructure for Network Computing) 
(http://boinc.berkeley.edu/) intend to join efforts of thousands of small personal computer systems in 
order to solve problems with great scalability.  

Grid nodes have limited resources and network bandwidth available. For this reason, applications must 
have full scalability capabilities to obtain good performance.  

Anyone can download the BOINC software and start collaborating, joining local processing and storage 
resources to form a very large and open grid. The software downloads tasks from the server, executes 
them and sends back the obtained results.  

The same way, anyone can develop applications using the BOINC API and submit them to the 
application database. Then, users can choose wich applications they want collaborate with.  

Some notable projects running on BOINC are:  

-Riesel-Sieve: prime numbers discovery.  

-Einsten@Home: find neutron stars and gravitational waves.  

-Primegrid: prime numbers decomposition aimed at verifying and improving RSA security algorithm.  

-Folding@Home: tries to understand the 3D model of proteins and their relationship with diseases.  

-World Community Grid: project related to understanding diseases such as cancer and AIDS.  

PERFOMANCE ANALYSIS 

Biotechnology problems have quadratic complexity or greater (Karlin and Altschul, 1993). Biological 
databases grow exponentially.  

Collaborative computing grids solve very big and time expensive problems, wich are typically 
impossible to solve on enterprise grids with low costs. However, there is no performance guarantee, 
quality of service or end time prevision. These variables depend on node availability.  

For example, BOINC has 535 teraflops (Table 1) available, but there is no compromise on when this 
rate can be reached.  

Table 1. BOINC Average processing capacity by processor architecture (Anderson and Fedak, 
2006). 

 

CPU Type Number of hosts GFLOPS per host GFLOPS total 

Intel 217,278 1.600 347,645 

AMD 95,958 1.737 166,679 

PowerPC 15,827 1.149 18,185 

SPARC 1,035 0.755 781 

Others 1,687 1.233 2,080 

Total 331,785 1.613 535,169 

Enterprise grids can concentrate resources on a specific goal. They have better throughput and a good 
prevision of task ending time. However, public enterprise grids such as EGI run several applications 
concurrently. This behaviour can affect specific parts of methods. Depending on algorithm steps 
precedence, it is better to execute the fundamental steps in periods of low concurrency.  
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EGI permits to trigger a number of parallel instances of the same application. To obtain performance 
improvements with this feature, users must verify current grid load to avoid that their processes stay in 
the queue waiting for resources to become available.  

Biomarker detection methods based on AI, such as SVD, have lower parallelizing capabilities because 
a step depends on results from the previous one. Any recursive algorithm generates vertical 
parallelization problems; this means that individual tasks cannot be divided in more processes to run 
on different processors. 

Unlike recursive methods, alignment algorithms, such as BLAST can be divided in different ways, as 
can be seen in Trombetti et al. (2006). One experiment got 19 times of processing time improvement. 
The same algorithm was modified, using MPI, by Battré and Angulo (2006) resulting in a significant 
scalability improvement (Figure 2).  

 

 

Fig. 2 Processing times using MPI BLAST (Battré and Angulo, 2006). 

CONCLUDING REMARKS 

In the last decade, a large amount of effort has been put on expanding the capacity of computational 
grids. Current efforts are concentrated on joining structures from companies and countries, culminating 
in bigger regional grids.  

There is also more and more biological information available to process and make correlations. 
Network, processing and storage infrastructures are available to perform these jobs. National networks 
used typically in public/enterprise grids have transfer rates of gigabits per second.  

On the other hand, volunteer computing has emerged as a valuable alternative to long tasks, since the 
problem has a good scalability due to the limitation of node resources.  

The perfomance of biomarker discovery methods can be improved if the correct grid type is employed. 
Project goals are often not achieved if the performance requirements are not satisfied. So, the wrong 
choice in terms of grid architecture can affect the whole project.  
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It is necessary to know the grid features before start writing applications to run on such environment. 
Factors like concurrency, average load, periods of overload and seasonal demands usually degrade 
throughput and can make some tasks unable to finish before deadline.  

Anyone engaged on studying or developing and proving one promising pattern theory may gain access 
to the infrastructure and execute his jobs, provided that the purpose is relevant to the scientific 
community.   

The complexity of genetic combinations, mutations and pathways is still far away from human 
understanding. It will take years to “digitalize” necessary biological information and perform metabolic 
simulations closer to reality. However, we already use and study information of specific “locus” and 
obtain important results solving interesting problems, especially about genetic diseases such as 
cancer.  
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